Return to search

Entanglement in Non-inertial Frames

This thesis considers entanglement, an important resource for quantum information processing tasks, while taking into account the theory of relativity. Not only is this a more complete description of quantum information, but it is necessary to fully understand quantum information processing tasks done by systems in arbitrary motion.

It is shown that accelerated measurements on the vacuum of a free Dirac spinor field results in an entangled state for an inertial observer. The physical mechanism at work is the Davies-Unruh effect. The entanglement produced increases as a function of the acceleration, reaching maximal entanglement in the asymptotic limit of infinite acceleration.

The dynamics of entanglement between two Unruh-DeWitt detectors, one stationary and the other undergoing non-uniform acceleration, was studied numerically. In the ultraweak coupling limit, the entanglement decreases as a function of time for the parameters considered and decreases faster than if the moving detector had had a uniform acceleration.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/3996
Date January 2008
CreatorsOstapchuk, David Cecil Murphy
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0021 seconds