Battery-powered trends in consumer electronics, transportation, and renewable energy sectors increase demands on DC/DC converter technology. Higher switching frequency and efficiency reduces solution size and cost, while increasing power capabilities. Still, switching noise remains the primary drawback associated with any DC/DC converter. Reducing a converter’s input ripple helps prevent switching noise from spreading to other systems on a shared DC power bus. This thesis covers the analysis, simulation, and implementation of a recently-proposed boost converter topology, alongside an equivalent standard boost converter, operating in steady-state, continuous conduction mode. A Matlab-based simulation predicts each converter’s input ripple performance using a state-space model. The converters’ hardware implementation minimizes component and layout differences to create an equivalent comparison. The simulation and hardware measurements demonstrate a 40% input current ripple reduction using the modified topology. Replacing standard boost converters with the modified topology minimizes the switching noise conducted through a system’s DC power network.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2976 |
Date | 01 June 2017 |
Creators | Lentz, Nathan H |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0022 seconds