Return to search

Understanding Human Navigation using Bayesian Hypothesis Comparison / Verstehen menschlichen Navigationsverhaltens mit hypothesengetriebenen Bayes'schen Methoden

Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience.

In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk “short distances” before taking their next photo vs. they tend to "travel long distances between points of interest", or whether users browsing Wikipedia "navigate semantically" vs. "click randomly".

For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain:
i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies.

In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data.

Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior. / Menschliches Navigationsverhalten zu verstehen, kann in einer Reihe von Anwendungsgebieten große Fortschritte bringen. Zum Beispiel können Einblicke in räumliche Navigation, wie etwa in Innenstädten, dabei helfen Infrastrukturen und öffentliche Verkehrsmittel besser abzustimmen. Genauso kann Wissen über das Navigationsverhalten von Benutzern im Internet, Entwickler dabei unterstützen Webseiten besser zu strukturieren oder generell die Benutzererfahrung zu verbessern.

In dieser Arbeit konzentrieren wir uns auf einen Hypothesen-getriebenen Ansatz, um menschliches Navigationsverhalten zu verstehen. Das heißt, wir formulieren und
vergleichen Hypothesen basierend auf beobachteten Navigationspfaden. Diese Hypothesen basieren zumeist auf existierenden Theorien, Literatur, vorherigen Experimenten oder Intuition. Beispielsweise kann es interessant sein zu vergleichen, ob Touristen, die eine Stadt erkunden, eher zu nahegelegenen Sehenswürdigkeiten laufen, als vornehmlich große Strecken zurückzulegen. Weiterhin kann man in Online-Szenarien vergleichen, ob Benutzer zum Beispiel auf Wikipedia eher semantisch navigieren, als zufällig Artikel anzusurfen.

Für diese Szenarien wurde HypTrails entwickelt, ein Bayes’scher Ansatz zum Vergleich von Navigationshypothesen. Doch obwohl HypTrails eine einfach zu benutzende und sehr flexible Methode darstellt, hat es einige deutliche Schwachstellen: Zum einen kann HypTrails keine heterogenen Prozesse modellieren (z.B., um das Verhalten von ver-
schiedenen Nutzergruppen, wie etwa von Touristen und Einheimischen, zu unterscheiden). Außerdem bietet HypTrails dem Benutzer keine Unterstützung bei der Entwicklung neuer Hypothesen. Dies stellt vor allem in Kombination mit großen Mengen an Hintergrundinformationen und anderen Einflussgrößen (z.B., Sehenswürdigkeiten, Beliebtheit von Orten, Tageszeiten, oder verschieden Benutzereigenschaften) eine große Herausforderung dar. Außerdem kann sich das Formulieren von adäquaten Hypothesen abhängig vom Anwendungsszenario als schwierig erweisen (z.B. aufgrund von kontinuierlichen, räumlichen Koordinaten oder zeitlichen Nebenbedingungen). In dieser Arbeit setzen wir an eben jenen Problemstellungen an.

Unsere Hauptbeiträge bestehen dabei aus den Ansätzen MixedTrails und SubTrails, die vor allem die ersten beiden genannten Schwachstellen adressieren: MixedTrails stellt einen Ansatz zum Vergleich von Hypothesen dar, der auf HypTrails basiert, es aber ermöglicht heterogene Hypothesen zu formulieren und zu vergleichen (z.B., bei Benutzergruppen mit unterschiedlichem Bewegungsverhalten). Während SubTrails eine Methode darstellt, die das Entwickeln neuer Hypothesen unterstützt, indem es die automatische Entdeckung von interpretierbaren Subgruppen mit außergewöhnlichen Bewegungscharakteristiken ermöglicht. Weiterhin, stellen wir eine verteitle und hochparallele Implementierung von HypTrails, ein Werkzeug zur Visualisierung von räumlicher Navigation zusammen mit Hintergrundinformationen, sowie ein System zur Sammlung, Analyse und Visualisierung von Daten aus dem Bereich des Participatory Sensing vor.

Schließlich, führen wir mehrere Studien in verschiedenen Anwendungsbereichen durch. Wir untersuchen etwa räumliche Navigation basierend auf Photos der Onlineplattform
Flickr, Browsing-Verhalten der Nutzer auf dem Verschlagwortungssystem BibSonomy, und das Arbeitsverhalten von Nutzern einer kommerziellen Crowdsourcing-Plattform. Dabei entwickeln wir mehrere Ansätze, um mit den Eigenheiten der spezifischen Szenarien umgehen zu können (wie etwa kontinuierliche räumliche Koordinaten oder zeitliche Nebenbedingungen). Die Ergebnisse zeigen die Vielzahl von Anwendungsgebieten und Facetten, in denen Navigationsverhalten analysiert werden kann, und illustrieren so die Ausdrucksstärke, vielseitige Anwendbarkeit und Flexibilität unserer Methoden. Gleichzeitig, geben wir neue Einblicke in verschiedene Navigationsprozesse und ermöglichen so einen wichtigen Schritt hin zum Verständnis der vielfältigen Ebenen menschlichen Navigationsverhaltens.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:16352
Date January 2018
CreatorsBecker, Martin
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.004 seconds