Return to search

Automated Hybrid Time Series Forecasting: Design, Benchmarking, and Use Cases / Automatisierte hybride Zeitreihenprognose: Design, Benchmarking und Anwendungsfälle

These days, we are living in a digitalized world. Both our professional and private lives are pervaded by various IT services, which are typically operated using distributed computing systems (e.g., cloud environments). Due to the high level of digitalization, the operators of such systems are confronted with fast-paced and changing requirements. In particular, cloud environments have to cope with load fluctuations and respective rapid and unexpected changes in the computing resource demands. To face this challenge, so-called auto-scalers, such as the threshold-based mechanism in Amazon Web Services EC2, can be employed to enable elastic scaling of the computing resources. However, despite this opportunity, business-critical applications are still run with highly overprovisioned resources to guarantee a stable and reliable service operation. This strategy is pursued due to the lack of trust in auto-scalers and the concern that inaccurate or delayed adaptations may result in financial losses.

To adapt the resource capacity in time, the future resource demands must be "foreseen", as reacting to changes once they are observed introduces an inherent delay. In other words, accurate forecasting methods are required to adapt systems proactively. A powerful approach in this context is time series forecasting, which is also applied in many other domains. The core idea is to examine past values and predict how these values will evolve as time progresses. According to the "No-Free-Lunch Theorem", there is no algorithm that performs best for all scenarios. Therefore, selecting a suitable forecasting method for a given use case is a crucial task. Simply put, each method has its benefits and drawbacks, depending on the specific use case. The choice of the forecasting method is usually based on expert knowledge, which cannot be fully automated, or on trial-and-error. In both cases, this is expensive and prone to error.

Although auto-scaling and time series forecasting are established research fields, existing approaches cannot fully address the mentioned challenges: (i) In our survey on time series forecasting, we found that publications on time series forecasting typically consider only a small set of (mostly related) methods and evaluate their performance on a small number of time series with only a few error measures while providing no information on the execution time of the studied methods. Therefore, such articles cannot be used to guide the choice of an appropriate method for a particular use case; (ii) Existing open-source hybrid forecasting methods that take advantage of at least two methods to tackle the "No-Free-Lunch Theorem" are computationally intensive, poorly automated, designed for a particular data set, or they lack a predictable time-to-result. Methods exhibiting a high variance in the time-to-result cannot be applied for time-critical scenarios (e.g., auto-scaling), while methods tailored to a specific data set introduce restrictions on the possible use cases (e.g., forecasting only annual time series); (iii) Auto-scalers typically scale an application either proactively or reactively. Even though some hybrid auto-scalers exist, they lack sophisticated solutions to combine reactive and proactive scaling. For instance, resources are only released proactively while resource allocation is entirely done in a reactive manner (inherently delayed); (iv) The majority of existing mechanisms do not take the provider's pricing scheme into account while scaling an application in a public cloud environment, which often results in excessive charged costs. Even though some cost-aware auto-scalers have been proposed, they only consider the current resource demands, neglecting their development over time. For example, resources are often shut down prematurely, even though they might be required again soon.

To address the mentioned challenges and the shortcomings of existing work, this thesis presents three contributions: (i) The first contribution-a forecasting benchmark-addresses the problem of limited comparability between existing forecasting methods; (ii) The second contribution-Telescope-provides an automated hybrid time series forecasting method addressing the challenge posed by the "No-Free-Lunch Theorem"; (iii) The third contribution-Chamulteon-provides a novel hybrid auto-scaler for coordinated scaling of applications comprising multiple services, leveraging Telescope to forecast the workload intensity as a basis for proactive resource provisioning. In the following, the three contributions of the thesis are summarized:


Contribution I - Forecasting Benchmark
To establish a level playing field for evaluating the performance of forecasting methods in a broad setting, we propose a novel benchmark that automatically evaluates and ranks forecasting methods based on their performance in a diverse set of evaluation scenarios. The benchmark comprises four different use cases, each covering 100 heterogeneous time series taken from different domains. The data set was assembled from publicly available time series and was designed to exhibit much higher diversity than existing forecasting competitions. Besides proposing a new data set, we introduce two new measures that describe different aspects of a forecast. We applied the developed benchmark to evaluate Telescope.

Contribution II - Telescope
To provide a generic forecasting method, we introduce a novel machine learning-based forecasting approach that automatically retrieves relevant information from a given time series. More precisely, Telescope automatically extracts intrinsic time series features and then decomposes the time series into components, building a forecasting model for each of them. Each component is forecast by applying a different method and then the final forecast is assembled from the forecast components by employing a regression-based machine learning algorithm. In more than 1300 hours of experiments benchmarking 15 competing methods (including approaches from Uber and Facebook) on 400 time series, Telescope outperformed all methods, exhibiting the best forecast accuracy coupled with a low and reliable time-to-result. Compared to the competing methods that exhibited, on average, a forecast error (more precisely, the symmetric mean absolute forecast error) of 29%, Telescope exhibited an error of 20% while being 2556 times faster. In particular, the methods from Uber and Facebook exhibited an error of 48% and 36%, and were 7334 and 19 times slower than Telescope, respectively.

Contribution III - Chamulteon
To enable reliable auto-scaling, we present a hybrid auto-scaler that combines proactive and reactive techniques to scale distributed cloud applications comprising multiple services in a coordinated and cost-effective manner. More precisely, proactive adaptations are planned based on forecasts of Telescope, while reactive adaptations are triggered based on actual observations of the monitored load intensity. To solve occurring conflicts between reactive and proactive adaptations, a complex conflict resolution algorithm is implemented. Moreover, when deployed in public cloud environments, Chamulteon reviews adaptations with respect to the cloud provider's pricing scheme in order to minimize the charged costs. In more than 400 hours of experiments evaluating five competing auto-scaling mechanisms in scenarios covering five different workloads, four different applications, and three different cloud environments, Chamulteon exhibited the best auto-scaling performance and reliability while at the same time reducing the charged costs. The competing methods provided insufficient resources for (on average) 31% of the experimental time; in contrast, Chamulteon cut this time to 8% and the SLO (service level objective) violations from 18% to 6% while using up to 15% less resources and reducing the charged costs by up to 45%.

The contributions of this thesis can be seen as major milestones in the domain of time series forecasting and cloud resource management. (i) This thesis is the first to present a forecasting benchmark that covers a variety of different domains with a high diversity between the analyzed time series. Based on the provided data set and the automatic evaluation procedure, the proposed benchmark contributes to enhance the comparability of forecasting methods. The benchmarking results for different forecasting methods enable the selection of the most appropriate forecasting method for a given use case. (ii) Telescope provides the first generic and fully automated time series forecasting approach that delivers both accurate and reliable forecasts while making no assumptions about the analyzed time series. Hence, it eliminates the need for expensive, time-consuming, and error-prone procedures, such as trial-and-error searches or consulting an expert. This opens up new possibilities especially in time-critical scenarios, where Telescope can provide accurate forecasts with a short and reliable time-to-result.

Although Telescope was applied for this thesis in the field of cloud computing, there is absolutely no limitation regarding the applicability of Telescope in other domains, as demonstrated in the evaluation. Moreover, Telescope, which was made available on GitHub, is already used in a number of interdisciplinary data science projects, for instance, predictive maintenance in an Industry 4.0 context, heart failure prediction in medicine, or as a component of predictive models of beehive development. (iii) In the context of cloud resource management, Chamulteon is a major milestone for increasing the trust in cloud auto-scalers. The complex resolution algorithm enables reliable and accurate scaling behavior that reduces losses caused by excessive resource allocation or SLO violations. In other words, Chamulteon provides reliable online adaptations minimizing charged costs while at the same time maximizing user experience. / Heutzutage leben wir in einer digitalisierten Welt. Sowohl unser berufliches als auch unser privates Leben ist von verschiedenen IT-Diensten durchzogen, welche typischerweise in verteilten Computersystemen (z.B. Cloud-Umgebungen) betrieben werden. Die Betreiber solcher Systeme sind aufgrund des hohen Digitalisierungsgrades mit schnellen und wechselnden Anforderungen konfrontiert. Insbesondere Cloud-Umgebungen unterliegen starken Lastschwankungen und entsprechenden schnellen und unerwarteten Änderungen des Bedarfs an Rechenressourcen. Um dieser Herausforderung zu begegnen, können so genannte Auto-Scaler, wie z.B. der schwellenwertbasierte Mechanismus von Amazon Web Services EC2, eingesetzt werden, um eine elastische Skalierung der Rechenressourcen zu ermöglichen. Doch trotz dieser Gelegenheit werden geschäftskritische Anwendungen nach wie vor mit deutlich überdimensionierten Rechenkapazitäten betrieben, um einen stabilen und zuverlässigen Dienstbetrieb zu gewährleisten. Diese Strategie wird aufgrund des mangelnden Vertrauens in Auto-Scaler und der Sorge verfolgt, dass ungenaue oder verzögerte Anpassungen zu finanziellen Verlusten führen könnten.

Um die Ressourcenkapazität rechtzeitig anpassen zu können, müssen die zukünftigen Ressourcenanforderungen "vorhergesehen" werden. Denn die Reaktion auf Veränderungen, sobald diese beobachtet werden, führt zu einer inhärenten Verzögerung. Mit anderen Worten, es sind genaue Prognosemethoden erforderlich, um Systeme proaktiv anzupassen. Ein wirksamer Ansatz in diesem Zusammenhang ist die Zeitreihenprognose, welche auch in vielen anderen Bereichen angewandt wird. Die Kernidee besteht darin, vergangene Werte zu untersuchen und vorherzusagen, wie sich diese Werte im Laufe der Zeit entwickeln werden. Nach dem "No-Free-Lunch Theorem" gibt es keinen Algorithmus, der für alle Szenarien am besten funktioniert. Daher ist die Auswahl einer geeigneten Prognosemethode für einen gegebenen Anwendungsfall eine wesentliche Herausforderung. Denn jede Methode hat - abhängig vom spezifischen Anwendungsfall - ihre Vor- und Nachteile. Deshalb basiert üblicherweise die Wahl der Prognosemethode auf Trial-and-Error oder auf Expertenwissen, welches nicht vollständig automatisiert werden kann. Beide Ansätze sind teuer und fehleranfällig.

Obwohl Auto-Skalierung und Zeitreihenprognose etablierte Forschungsgebiete sind, können die bestehenden Ansätze die genannten Herausforderungen nicht vollständig bewältigen: (i) Bei unserer Untersuchung zur Zeitreihenvorhersage stellten wir fest, dass die meisten der überprüften Artikel nur eine geringe Anzahl von (meist verwandten) Methoden berücksichtigen und ihre Performanz auf einem kleinen Datensatz von Zeitreihen mit nur wenigen Fehlermaßen bewerten, während sie keine Informationen über die Ausführungszeit der untersuchten Methoden liefern. Daher können solche Artikel nicht als Hilfe für die Wahl einer geeigneten Methode für einen bestimmten Anwendungsfall herangezogen werden; (ii) Bestehende hybride open-source Prognosemethoden, die sich mindestens zwei Methoden zunutze machen, um das "No-Free-Lunch Theorem" anzugehen, sind rechenintensiv, schlecht automatisiert, für einen bestimmten Datensatz ausgelegt oder haben eine unvorhersehbare Laufzeit. Methoden, die eine hohe Varianz in der Ausführungszeit aufweisen, können nicht für zeitkritische Szenarien angewendet werden (z.B. Autoskalierung), während Methoden, die auf einen bestimmten Datensatz zugeschnitten sind, Einschränkungen für mögliche Anwendungsfälle mit sich bringen (z.B. nur jährliche Zeitreihen vorhersagen); (iii) Auto-Scaler skalieren typischerweise eine Anwendung entweder proaktiv oder reaktiv. Obwohl es einige hybride Auto-Scaler gibt, fehlt es ihnen an ausgeklügelten Lösungen zur Kombination von reaktiver und proaktiver Skalierung. Beispielsweise werden Ressourcen nur proaktiv freigesetzt, während die Ressourcenzuweisung vollständig reaktiv (inhärent verzögert) erfolgt; (iv) Die Mehrheit der vorhandenen Mechanismen berücksichtigt bei der Skalierung einer Anwendung in einer öffentlichen Cloud-Umgebung nicht das Preismodell des Anbieters, was häufig zu überhöhten Kosten führt. Auch wenn einige kosteneffiziente Auto-Scaler vorgeschlagen wurden, berücksichtigen sie nur den aktuellen Ressourcenbedarf und vernachlässigen ihre Entwicklung im Laufe der Zeit. Beispielsweise werden Ressourcen oft vorzeitig abgeschaltet, obwohl sie vielleicht bald wieder benötigt werden.

Um den genannten Herausforderungen und den Defiziten der bisherigen Arbeiten zu begegnen, werden in dieser Arbeit drei Beiträge vorgestellt: (i) Der erste Beitrag - ein Prognosebenchmark - behandelt das Problem der begrenzten Vergleichbarkeit zwischen bestehenden Prognosemethoden; (ii) Der zweite Beitrag stellt eine automatisierte hybride Zeitreihen-Prognosemethode namens Telescope vor, die sich der Herausforderung des "No-Free-Lunch Theorem" stellt; (iii) Der dritte Beitrag stellt Chamulteon, einen neuartigen hybriden Auto-Scaler für die koordinierte Skalierung von Anwendungen mit mehreren Diensten, bereit, der Telescope zur Vorhersage der Lastintensität als Grundlage für eine proaktive Ressourcenbereitstellung nutzt. Im Folgenden werden die drei Beiträge der Arbeit zusammengefasst:

Beitrag I - Prognosebenchmark
Um gleiche Ausgangsbedingungen für die Bewertung von Prognosemethoden anhand eines breiten Spektrums zu schaffen, schlagen wir einen neuartigen Benchmark vor, der Prognosemethoden auf der Grundlage ihrer Performanz in einer Vielzahl von Szenarien automatisch bewertet und ein Ranking erstellt. Der Benchmark umfasst vier verschiedene Anwendungsfälle, die jeweils 100 heterogene Zeitreihen aus verschiedenen Bereichen abdecken. Der Datensatz wurde aus öffentlich zugänglichen Zeitreihen zusammengestellt und so konzipiert, dass er eine viel höhere Diversität aufweist als bestehende Prognosewettbewerbe. Neben dem neuen Datensatz führen wir zwei neue Maße ein, die verschiedene Aspekte einer Prognose beschreiben. Wir haben den entwickelten Benchmark zur Bewertung von Telescope angewandt.

Beitrag II - Telescope
Um eine generische Prognosemethode bereitzustellen, stellen wir einen neuartigen, auf maschinellem Lernen basierenden Prognoseansatz vor, der automatisch relevante Informationen aus einer gegebenen Zeitreihe extrahiert. Genauer gesagt, Telescope extrahiert automatisch intrinsische Zeitreihenmerkmale und zerlegt die Zeitreihe dann in Komponenten, wobei für jede dieser Komponenten ein Prognosemodell erstellt wird. Jede Komponente wird mit einer anderen Methode prognostiziert und dann wird die endgültige Prognose aus den vorhergesagten Komponenten unter Verwendung eines regressionsbasierten Algorithmus des maschinellen Lernens zusammengestellt. In mehr als 1300 Experiment-Stunden, in denen 15 konkurrierende Methoden (einschließlich Ansätze von Uber und Facebook) auf 400 Zeitreihen verglichen wurden, übertraf Telescope alle Methoden und zeigte die beste Prognosegenauigkeit in Verbindung mit einer niedrigen und zuverlässigen Ausführungszeit. Im Vergleich zu den konkurrierenden Methoden, die im Durchschnitt einen Prognosefehler (genauer gesagt, den symmetric mean absolute forecast error) von 29% aufwiesen, wies Telescope einen Fehler von 20% auf und war dabei 2556 mal schneller. Insbesondere die Methoden von Uber und Facebook wiesen einen Fehler von 48% bzw. 36% auf und waren 7334 bzw. 19 mal langsamer als Telescope.

Beitrag III - Chamulteon
Um eine zuverlässige Auto-Skalierung zu ermöglichen, stellen wir einen hybriden Auto-Scaler vor, der proaktive und reaktive Techniken kombiniert, um verteilte Cloud-Anwendungen, die mehrere Dienste umfassen, koordiniert und kostengünstig zu skalieren. Genauer gesagt, werden proaktive Anpassungen auf der Grundlage von Prognosen von Telescope geplant, während reaktive Anpassungen auf der Grundlage tatsächlicher Beobachtungen der überwachten Lastintensität ausgelöst werden. Um auftretende Konflikte zwischen reaktiven und proaktiven Anpassungen zu lösen, wird ein komplexer Konfliktlösungsalgorithmus implementiert. Außerdem überprüft Chamulteon Anpassungen im Hinblick auf das Preismodell des Cloud-Anbieters, um die anfallenden Kosten in öffentlichen Cloud-Umgebungen zu minimieren. In mehr als 400 Experiment-Stunden, in denen fünf konkurrierende Auto-Skalierungsmechanismen unter fünf verschiedene Arbeitslasten, vier verschiedene Anwendungen und drei verschiedene Cloud-Umgebungen evaluiert wurden, zeigte Chamulteon die beste Auto-Skalierungsleistung und Zuverlässigkeit bei gleichzeitiger Reduzierung der berechneten Kosten. Die konkurrierenden Methoden lieferten während (durchschnittlich) 31% der Versuchszeit zu wenige Ressourcen. Im Gegensatz dazu reduzierte Chamulteon diese Zeit auf 8% und die SLO-Verletzungen (Service Level Objectives) von 18% auf 6%, während es bis zu 15% weniger Ressourcen verwendete und die berechneten Kosten um bis zu 45% senkte.

Die Beiträge dieser Arbeit können als wichtige Meilensteine auf dem Gebiet der Zeitreihenprognose und der automatischen Skalierung in Cloud Computing angesehen werden. (i) In dieser Arbeit wird zum ersten Mal ein Prognosebenchmark präsentiert, der eine Vielzahl verschiedener Bereiche mit einer hohen Diversität zwischen den analysierten Zeitreihen abdeckt. Auf der Grundlage des zur Verfügung gestellten Datensatzes und des automatischen Auswertungsverfahrens trägt der vorgeschlagene Benchmark dazu bei, die Vergleichbarkeit von Prognosemethoden zu verbessern. Die Benchmarking-Ergebnisse von verschiedenen Prognosemethoden ermöglichen die Auswahl der am besten geeigneten Prognosemethode für einen gegebenen Anwendungsfall. (ii) Telescope bietet den ersten generischen und vollautomatischen Zeitreihen-Prognoseansatz, der sowohl genaue als auch zuverlässige Prognosen liefert, ohne Annahmen über die analysierte Zeitreihe zu treffen. Dementsprechend macht es teure, zeitaufwändige und fehleranfällige Verfahren überflüssig, wie z.B. Trial-and-Error oder das Hinzuziehen eines Experten. Dies eröffnet neue Möglichkeiten, insbesondere in zeitkritischen Szenarien, in denen Telescope genaue Vorhersagen mit einer kurzen und zuverlässigen Antwortzeit liefern kann.

Obwohl Telescope für diese Arbeit im Bereich des Cloud Computing eingesetzt wurde, gibt es, wie die Auswertung zeigt, keinerlei Einschränkungen hinsichtlich der Anwendbarkeit von Telescope in anderen Bereichen. Darüber hinaus wird Telescope, das auf GitHub zur Verfügung gestellt wurde, bereits in einer Reihe von interdisziplinären datenwissenschaftlichen Projekten eingesetzt, z.B. bei der vorausschauenden Wartung im Rahmen von Industry 4.0, bei der Vorhersage von Herzinsuffizienz in der Medizin oder als Bestandteil von Vorhersagemodellen für die Entwicklung von Bienenstöcken. (iii) Im Kontext der elastischen Ressourcenverwaltung ist Chamulteon ein wichtiger Meilenstein für die Stärkung des Vertrauens in Auto-Scaler. Der komplexe Konfliktlösungsalgorithmus ermöglicht ein zuverlässiges und genaues Skalierungsverhalten, das Verluste durch übermäßige Ressourcenzuweisung oder SLO-Verletzungen reduziert. Mit anderen Worten, Chamulteon bietet zuverlässige Ressourcenanpassungen, die die berechneten Kosten minimieren und gleichzeitig die Benutzerzufriedenheit maximieren.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:22025
Date January 2021
CreatorsBauer, André
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0048 seconds