Multitasking, defined as performing more than one task at a time, typically yields performance decrements, for instance, in processing speed and accuracy. These performance costs are often distributed asymmetrically among the involved tasks. Under suitable conditions, this can be interpreted as a marker for prioritization of one task – the one that suffers less – over the other. One source of such task prioritization is based on the use of different effector systems (e.g., oculomotor system, vocal tract, limbs) and their characteristics. The present work explores such effector system-based task prioritization by examining to which extent associated effector systems determine which task is processed with higher priority in multitasking situations. Thus, three different paradigms are used, namely the simultaneous (stimulus) onset paradigm, the psychological refractory period (PRP) paradigm, and the task switching paradigm. These paradigms invoke situations in which two (in the present studies basic spatial decision) tasks are a) initiated at exactly the same time, b) initiated with a short varying temporal distance (but still temporally overlapping), or c) in which tasks alternate randomly (without temporal overlap). The results allow for three major conclusions: 1. The assumption of effector system-based task prioritization according to an ordinal pattern (oculomotor > pedal > vocal > manual, indicating decreasing prioritization) is supported by the observed data in the simultaneous onset paradigm. This data pattern cannot be explained by a rigid “first come, first served” task scheduling principle. 2. The data from the PRP paradigm confirmed the assumption of vocal-over-manual prioritization and showed that classic PRP effects (as a marker for task order-based prioritization) can be modulated by effector system characteristics. 3. The mere cognitive representation of task sets (that must be held active to switch between them) differing in effector systems without an actual temporal overlap in task processing, however, is not sufficient to elicit the same effector system prioritization phenomena observed for overlapping tasks. In summary, the insights obtained by the present work support the assumptions of parallel central task processing and resource sharing among tasks, as opposed to exclusively serial processing of central processing stages. Moreover, they indicate that effector systems are a crucial factor in multitasking and suggest an integration of corresponding weighting parameters in existing dual-task control frameworks. / Das gleichzeitige Bearbeiten von mehreren Aufgaben (Multitasking) führt in der Regel zu schlechterer Performanz, zum Beispiel bezüglich Geschwindigkeit und Genauigkeit der Aufgabenausführung. Diese sogenannten Doppelaufgaben- (oder Multitasking-) Kosten sind oft asymmetrisch auf die involvierten Aufgaben verteilt. Dies kann unter bestimmten Gegebenheiten als Priorisierung von jenen Aufgaben, die mit geringeren Kosten assoziiert sind über jene, die stärker durch die Doppelaufgabensituation leiden, interpretiert werden. Eine Quelle für solch eine Aufgabenpriorisierung sind unterschiedliche Effektorsysteme (z.B. Blickbewegungsapparat, Extremitäten, Vokaltrakt), mit denen die Aufgaben jeweils ausgeführt werden sollen. Die vorliegende Arbeit untersucht solche effektorsystembasierte Priorisierung, das heißt, inwiefern assoziierte Effektorsysteme determinieren, ob Aufgaben in Multitasking-Situationen priorisiert verarbeitet werden. Dazu wurden drei verschiedene experimentelle Paradigmen genutzt: a) das „Simultane Stimulus-Darbietungs-Paradigma“, b) das „Psychologische Refraktärperioden-Paradigma“ und c) das „Aufgabenwechsel-Paradigma“. Innerhalb dieser Paradigmen werden Reaktionen (Reaktionszeiten und Fehlerraten) gemessen und zwischen verschiedenen Effektorsystemen verglichen, die a) zum genau gleichen Zeitpunkt gestartet werden, b) mit einem kurzen, variierten zeitlichen Versatz gestartet werden, aber in ihrer Ausführung überlappen, oder c) zwischen denen in unvorhersehbarer Reihenfolge hin und her gewechselt werden soll. Entsprechend dieser drei Ansätze erlauben die Ergebnisse drei wichtige Schlussfolgerungen: 1. Unter simultanem Einsetzen der Aufgabenverarbeitung (und damit ohne extern suggerierte Reihenfolge) folgen Doppelaufgabenkontrollprozesse einem ordinalen Priorisierungsmuster auf Basis der mit den Aufgaben assoziierten Effektorsysteme in der Reihenfolge: okulomotorisch > pedal > vokal > manuell (im Sinne einer absteigenden Priorisierung). Dieses Muster ist nicht durch Bearbeitungsgeschwindigkeit im Sinne eines „wer zuerst kommt, mahlt zuerst“-Prinzips erklärbar. 2. Eine Aufgabenpriorisierung, die auf einer externen Aufgabenreihenfolge basiert (gemessen im PRP-Effekt), kann durch die mit den Aufgaben assoziierten Effektorsysteme moduliert werden. 3. Systematische effektorsystembasierte Aufgabenpriorisierung ist nur dann konsistent zu beobachten, wenn Teile der Aufgabenverarbeitung zeitlich überlappen. Eine rein mentale Repräsentation einer Aufgabe, die in einem anderen Effektorsystem ausgeführt werden soll, reicht nicht dazu aus, um das oben beschriebene Priorisierungsmuster vollständig zu instanziieren. Alles in allem sprechen die Ergebnisse der vorliegenden Arbeit für parallele (und gegen ausschließlich serielle) Reaktionsauswahlprozesse und dafür, dass limitierte kognitive Ressourcen zwischen Aufgaben aufgeteilt werden. Außerdem zeigen die vorliegenden Ergebnisse den substantiellen Einfluss von Effektorsystemen auf Ressourcenzuweisungsprozesse in Mehrfachaufgabensituationen und legen nahe, entsprechende Gewichtungsparameter in bestehende Modelle zu Doppelaufgabenkontrolle zu integrieren.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:20108 |
Date | January 2020 |
Creators | Hoffmann, Mareike |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0104 seconds