We model Milky Way like isolated disk galaxies in high resolution three-dimensional hydrodynamical simulations with the adaptive mesh refinement code Enzo. The model galaxies include a dark matter halo and a disk of gas and stars. We use a simple implementation of sink particles to measure and follow collapsing gas, and simulate star formation as well as stellar feedback in some cases. We investigate two largely different realizations of star formation. Firstly, we follow the classical approach to transform cold, dense gas into stars with an fixed efficiency. These kind of simulations are known to suffer from an overestimation of star formation and we observe this behavior as well. Secondly, we use our newly developed FEARLESS approach to combine hydrodynamical simulations with a semi-analytic modeling of unresolved turbulence and use this technique to dynamically determine the star formation rate. The subgrid-scale turbulence regulated star formation simulations point towards largely smaller star formation efficiencies and henceforth more realistic overall star formation rates. More work is necessary to extend this method to account for the observed highly supersonic turbulence in molecular clouds and ultimately use the turbulence regulated algorithm to simulate observed star formation relations. / In dieser Arbeit beschäftigen wir uns mit der Modellierung und Durchführung von hoch aufgelösten dreidimensionalen Simulationen von isolierten Scheibengalaxien, vergleichbar unserer Milchstraße. Wir verwenden dazu den Simulations-Code Enzo, der die Methode der adaptiven Gitterverfeinerung benutzt um die örtliche und zeitliche Auflösung der Simulationen anzupassen. Unsere Galaxienmodelle beinhalten einen Dunkle Materie Halo sowie eine galaktische Scheibe aus Gas und Sternen. Regionen besonders hoher Gasdichte werden durch Teilchen ersetzt, die fortan die Eigenschaften des Gases beziehungsweise der darin entstehenden Sterne beschreiben. Wir untersuchen zwei grundlegend verschiedene Darstellungen von Sternentstehung. Die erste Methode beschreibt die Umwandlung dichten Gases einer Molekülwolke in Sterne mit konstanter Effektivität und führt wie in früheren Simulationen zu einer Überschätzung der Sternentstehungsrate. Die zweite Methode nutzt das von unserer Gruppe neu entwickelte FEARLESS Konzept, um hydrodynamische Simulationen mit analytischen-empirischen Modellen zu verbinden und bessere Aussagen über die in einer Simulation nicht explizit aufgelösten Bereiche treffen zu können. Besonderes Augenmerk gilt in dieser Arbeit dabei der in Molekülwolken beobachteten Turbulenz. Durch die Einbeziehung dieser nicht aufgelösten Effekte sind wir in der Lage eine realistischere Aussage über die Sternentstehungsrate zu treffen. Eine zukünftige Weiterentwicklung dieser von uns entwickelten und umgesetzten Technik kann in Zukunft dafür verwendet werden, die Qualität des durch Turbulenz regulierten Sternentstehungsmodells noch weiter zu steigern.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2777 |
Date | January 2008 |
Creators | Hupp, Markus |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds