Platelets are continuously produced from megakaryocytes (MK) in the bone marrow by a cytoskeleton-driven process of which the molecular regulation is not fully understood.
As revealed in this thesis, MK/ platelet-specific Profilin1 (Pfn1) deficiency results in micro- thrombocytopenia, a hallmark of the Wiskott-Aldrich syndrome (WAS) in humans, due to accelerated platelet turnover and premature platelet release into the bone marrow. Both Pfn1-deficient mouse platelets and platelets isolated from WAS patients contained abnormally organized and hyper-stable microtubules. These results reveal an unexpected function of Pfn1 as a regulator of microtubule organization and point to a previously unrecognized mechanism underlying the platelet formation defect in WAS patients.
In contrast, Twinfilin2a (Twf2a) was established as a central regulator of platelet reactivity and turnover. Twf2a-deficient mice revealed an age-dependent macrothrombocytopenia that could be explained by a markedly decreased platelet half-life, likely due to the pronounced hyper-reactivity of \(Twf2a^{-/-}\) platelets. The latter was characterized by sustained integrin acti- vation and thrombin generation in vitro that translated into accelerated thrombus formation in vivo. To further elucidate mechanisms of integrin activation, Rap1-GTP-interacting adaptor molecule (RIAM)-null mice were generated. Despite the proposed critical role of RIAM for platelet integrin activation, no alterations in this process could be found and it was concluded that RIAM is dispensable for the activation of β1 and β3 integrins, at least in platelets. These findings change the current mechanistic understanding of platelet integrin activation.
Outside-in signaling by integrins and other surface receptors was supposed to regulate MK migration, but also the temporal and spatial formation of proplatelet protrusions. In this the- sis, phospholipase D (PLD) was revealed as critical regulator of actin dynamics and podo- some formation in MKs. Hence, the unaltered platelet counts and production in \(Pld1/2^{-/-}\) mice and the absence of a premature platelet release in the bone marrow of \(Itga2^{-/-}\) mice question the role of podosomes in platelet production and raise the need to reconsider the proposed inhibitory signaling by α2β1 integrins on proplatelet formation.
Non-muscle myosin IIA (NMMIIA) has been implicated as a downstream effector of the in- hibitory signals transmitted via α2β1 integrins. Besides Rho-GTPase signaling, also \(Mg^{2+}\) and transient receptor potential melastatin-like 7 (TRPM7) channel α-kinase are known regulators of NMMIIA activity. In this thesis, TRPM7 was identified as major regulator of \(Mg^{2+}\) homeostasis in MKs and platelets. Furthermore, decreased \([Mg^{2+}]_i\) led to deregulated NMMIIA activity and altered cytoskeletal dynamics that impaired thrombopoiesis and resulted in macrothrombocytopenia in humans and mice. / Thrombozyten werden kontinuierlich durch einen Zytoskelett-getriebenen Prozess von Megakaryozyten (MK) im Knochenmark gebildet. Die zugrunde liegenden molekularen Me- chanismen sind jedoch weitestgehend unverstanden.
In dieser Thesis konnte gezeigt werden, dass eine MK/ Thrombozyten-spezifische Profilin1 (Pfn1) Defizienz eine Mikrothrombozytopenie verursacht, die das Hauptmerkmal des Wiskott- Aldrich Syndroms (WAS) im Menschen ist. Die reduzierte Thrombozytenzahl konnte auf eine beschleunigte Entfernung der Thrombozyten aus der Zirkulation sowie deren vorzeitige Freisetzung im Knochenmark zurückgeführt werden. Sowohl Thrombozyten von Pfn1- defizienten Mäusen, als auch von Patienten mit WAS wiesen abnormal organisierte und hyper-stabile Mikrotubuli auf. Die im Rahmen dieser Thesis gewonnenen Ergebnisse zeigen eine unerwartete Funktion von Pfn1 als Regulator der Mikrotubuliorganisation und weisen auf einen bisher nicht erkannten Mechanismus hin, welcher dem Thrombozytenproduktionsde- fekt in Patienten mit WAS zugrunde liegt.
Im Gegensatz hierzu konnte Twinfilin2a (Twf2a) als zentraler Regulator der Thrombozyten- reaktivität und Lebenspanne etabliert werden. Mäuse mit einer Twf2a Defizienz zeigten eine progressive Makrothrombozytopenie, die durch eine stark reduzierte Lebenspanne der Thrombozyten erklärt werden konnte. Letzteres war höchstwahrscheinlich durch eine erhöhte Empfindlichkeit von Twf2a-defizienten Thrombozyten gegenüber von aktivierenden Stimuli bedingt. Die Hyperreaktivität von Twf2a-defizienten Thrombozyten zeigte sich durch eine verlängerte Aktivierung der Integrine und erhöhter Thrombingenerierung in vitro sowie be- schleunigter Thrombusbildung in vivo.
Um die Mechanismen der Integrinaktivierung besser zu charakterisieren, wurden Rap1-GTP- interacting adaptor molecule (RIAM)-null Mäuse generiert. Obwohl RIAM eine zentrale Rolle in der thrombozytären Integrinaktivierung zugeschriebenen wurde, konnten keine Defekte in diesem Prozess in RIAM-null Thrombozyten identifiziert werden. Dies führte zu der Schluss- folgerung, dass RIAM für die Aktivierung von β1 und β3 Integrinen in Thrombozyten nicht benötigt wird. Diese Erkenntnisse verändern das gegenwärtige mechanistische Verständnis der Integrinaktivierung in Thrombozyten.
Die outside-in Signalgebung durch Integrine und andere Oberflächenrezeptoren reguliert die Migration sowie die zeitliche und räumliche Bildung von proplatelets durch MKs. In dieser Thesis konnte gezeigt werden, dass Phospholipase D (PLD) ein zentraler Regulator der Aktindynamik und Podosomenbildung in MKs ist. Die normale Thrombozytenzahl und -Produktion in \(Pld1/2^{-/-}\) Mäusen sowie die fehlende vorzeitige Freisetzung von Thrombozytenim Knochenmark von \(Itga2^{-/-}\) Mäusen, stellen die Funktion von Podosomen in der Throm- bozytenproduktion in Frage. Ferner zeigen diese Ergebnisse, dass die Rolle der inhibitori- schen Signalgebung durch α2β1 Integrine in der proplatelet-Bildung noch einmal überdacht werden muss.
Non-muscle myosin IIA (NMMIIA) wird als Effektorprotein im α2β1 Integrinsignalweg ange- sehen. Neben Signalen, die durch Rho-GTPasen vermittelt werden, regulieren auch \(Mg^{2+}\) und die α-Kinase des transient receptor potential melastatin-like 7 (TRPM7) Kanals die Akti- vität von NMMIIA. Im Rahmen dieser Thesis wurde TRPM7 als Hauptregulator der \(Mg^{2+}\) Homöostase in MKs und Thrombozyten identifiziert. Darüber hinaus führten erniedrigte intra- zelluläre \(Mg^{2+}\) Konzentrationen zu einer veränderten NMMIIA Aktivität und Zytoskelettdyna- mik. Diese Defekte beeinträchtigten die Thrombopoese und verursachten eine Makrothrom- bozytopenie im Menschen und der Maus.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12266 |
Date | January 2017 |
Creators | Stritt, Simon |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds