Return to search

Die Rolle von Calcineurin im Nukleus von Kardiomyozyten und ein innovativer Inhibitor als neuer therapeutischer Ansatz bei kardialer Hypertrophie / The role of calcineurin in the nucleus of cardiomyocytes and an innovative inhibitor as a new therapy approach to treat cardiac hypertrophy

Die Calcineurin/NFAT-Signalkaskade spielt eine wichtige Rolle bei der Entwicklung einer kardialen Hypertrophie. Im Zytoplasma von Kardiomyozyten wird die Phosphatase Calcineurin nach Stimulierung der Zellen, z. B. durch Dehnungsreize, Angiotensin II (Ang II) oder Endothelin I (ET-1), und einen daraus folgenden intrazellulären Ca2+-Strom aktiviert. Dies führt zur Dephosphorylierung von NFAT und zu dessen nukleärer Translokation. In früheren Arbeiten von Ritter et al. wurden sowohl eine nukleäre Lokalisationssequenz (NLS) als auch eine nukleäre Exportsequenz (NES) innerhalb von Calcineurin identifiziert, die den Transport von Calcineurin zwischen dem Zytoplasma und dem Nukleus ermöglichen. Basierend auf diesen Ergebnissen wurde das Import Blocking Peptid (IBP) entwickelt. Dieses Peptid entspricht der NLS von Calcineurin und blockiert die Calcineurin-Bindungsstellen des Shuttleproteins (Karyopherins) Importin β1. So wird die Translokation von Calcineurin in den Nukleus unterbunden und die Signalkaskade zur Aktivierung von Hypertrophie-Genen in Kardiomyozyten unterbrochen. Dabei blieb die Phosphatase-Aktivität von Calcineurin unbeeinflusst. Eines der Ziele dieser Arbeit war, IBP weiter zu optimieren und den „proof of principle“ auch in vivo zu führen. Hierfür wurden u. a. ein geeignetes Lösungsmittel bestimmt (biokompatibel und an die Peptidcharakteristika angepasst), die Peptidstruktur modifiziert (Erhöhung der Spezifität/Wirksamkeit) und die erforderliche Dosis weiter eingegrenzt (Belastungs- und Kostenreduktion). Unter Verwendung einer TAMRA-markierten Wirkstoffvariante konnten der Weg des Peptids in Mäusen nachverfolgt und die Ausscheidung quantifiziert werden.
Aufbauend auf den Ergebnissen von Burkard et al., die die Entstehung einer konstitutiv-aktiven und nukleären Calcineurin-Isoform nach proteolytischer Spaltung durch Calpain nachwiesen, wurde die Rolle von Calcineurin im Zellkern genauer untersucht. Außerdem sollte die Frage beantwortet werden, wie (über Calcineurin?) die Herzmuskelzelle zwischen Calciumschwankungen im Zuge der Exzitations-Kontraktions-Kopplung (ECC) und vergleichsweise schwachen Calciumsignalen zur Transkriptionsteuerung unterscheidet. Mit Hilfe von nukleären Calcineurin-Mutanten, die einen Defekt in der Ca2+-Bindung aufwiesen, konnte die Bedeutung von Calcineurin als Calciumsensor für die NFAT-abhängige Transkription nachgewiesen werden. Im Mausmodell waren unter Hypertrophie-Bedingungen die Ca2+-Transienten in der nukleären Mikrodomäne signifikant stärker als im Zytosol, wodurch die Hypothese, dass die Aktivierung der Calcineurin/NFAT-Signalkaskade unabhängig von zytosolischem Ca2+ erfolgt, gestützt wird. Messungen von nukleären und zytosolischen Ca2+-Transienten in IP3-Sponge-Mäusen zeigten im Vergleich zu Wildtyp-Mäusen keine Erhöhung des Ca2+-Spiegels während der Diastole, was auf eine Rolle von Inositoltrisphosphat (IP3) in der Signalkaskade deutet. Außerdem zeigten isolierte Zellkerne ventrikulärer adulter Kardiomyozyten eine erhöhte Expression des IP3-Rezeptors 2 (IP3R2) nach Ang II-Stimulierung. Diese gesteigerte Expression war abhängig von der Calcineurin/NFAT-Kaskade und bestand sogar

3 Wochen nach Entfernung des Ang II-Stimulus fort. Zusammenfassend lässt sich sagen, dass nukleäres Calcineurin als ein Ca2+-Sensor agiert, dass die lokale Ca2+-Freisetzung im Kern über IP3-Rezeptoren detektiert wird und dass dies im Zusammenspiel mit NFAT die Transkription von Hypertrophiegenen initiiert. / The Calcineurin/NFAT signaling pathway plays an important role in the development of cardiac hypertrophy. Calcineurin is activated in the cytoplasm of cardiac myocytes by the interaction of different factors, e.g. Ang II or ET-1, with structures of the cell surface, this leads to the desphosphorylation of NFAT and its translocation into the nucleus. Previous works by the working group led to the detection of a nuclear localization sequence (NLS) and a nuclear export signal (NES) within the Calcineurin domains. They are required for the transport of Calcineurin through the nuclear membrane. Supported by these findings the import blocking peptide (IBP) was conceived. IBP mimics the NLS of Calcineurin and binds to the shuttle protein Importin β1, thereby blocking the binding sites for Calcineurin and inhibiting the transport of Calcineurin to the nucleus. One characteristic of the peptide is that it does not affect the phosphatase activity of Calcineurin. The aim of this project was to improve the peptide and to investigate its efficacy in vivo. We identified the optimal solvent and were able to significantly improve the solubility of IBP. We developed new isoforms of IBP with higher specificity. We were able to identify the minimal effective dose and studied the degradation and excretion of the substance in vivo.
As shown by Burkard et al., Calcineurin is proteolytically cleaved by calpain, which leads to a constitutively active Calcineurin form. We investigated the role of this isoform in the nucleus. Furthermore, we investigated how Calcineurin is able to differentiate between Ca2+ fluctuations in the course of excitation contraction coupling (ECC) and Ca2+ signals for a hypertrophic response. Nuclear Calcineurin mutants defective for Ca2+ binding failed to activate NFAT-dependent transcription. Under hypertrophic conditions Ca2+ transients in the nuclear microdomain were significantly higher than in the cytosol providing a basis for sustained Calcineurin/NFAT mediated signaling uncoupled from cytosolic Ca2+. Measurements of nuclear and cytosolic Ca2+ transients in IP3 sponge mice showed no increase of Ca2+ levels during diastole as we detected in wildtype mice. Nuclei, isolated from ventricular myocytes of mice after chronic Ang II treatment, showed an elevation of IP3R2 expression which was dependent from calcineurin/NFAT signaling and persisted for 3 weeks after removal of the Ang II stimulus. Thus, we demonstrate that nuclear calcineurin was able to act as a nuclear Ca2+ sensor detecting local Ca2+ release from the nuclear envelope via IP3R.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:20808
Date January 2020
CreatorsOlivares-Baerwald, Silvana
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds