Return to search

Modellbasierte Berechnung der frequenzabhängigen Stromverteilung in räumlich ausgedehnten Erdungssystemen

Die Auslegung von Erdungsanlagen nach der DIN EN 50522 basiert im Wesentlichen auf der Bewertung der bei Erdfehler auftretenden Erdungs- bzw. Berührungsspannungen. Deren Berechnung setzt die Kenntnis der Fehlerstromaufteilung (bzw. der wirksamen Reduktionsfaktoren) voraus, da nur der Stromanteil, der als Erdungsstrom über der Erdungsimpedanz wirksam wird, tendenziell gefährliche Potentialanhebungen verursacht. Maßgebend für die Verteilung der Ströme im Erdungssystem sind die induktiven Kopplungen zwischen dem fehlerstromführenden Leiter und den zum Sternpunkt zurückführenden Strompfaden. Daraus geht hervor, dass sowohl die räumliche Anordnung der Leiter als auch die Frequenz der Fehlerstromanteile die vorherrschenden Verhältnisse entscheidend beeinflussen. Beide Einflüsse werden in den Standards und der Fachliteratur bis dato nur bedingt betrachtet.
Diese Arbeit befasst sich daher mit der rechnerischen Bestimmung und Bewertung der Potentialanhebungen, welche sich im Falle eines Erdfehlers in Abhängigkeit von den Frequenzanteilen des Fehlerstroms in unterschiedlich aufgebauten Erdungssystemen ergeben. Wesentlicher Bestandteil der Ausführungen ist die Entwicklung eines Modells zur Berechnung der frequenzabhängigen Stromverteilung und den daraus resultierenden Erdungsspannungen in verbundenen Erdungsanlagen. Dieses bildet, in Erweiterung zu bestehenden Ansätzen, insbesondere den Einfluss der dreidimensionalen Anordnung der Leiter auf deren magnetische Kopplungen ab. Durch theoretische Betrachtungen und begleitende Messungen werden die Grenzen derartiger rechnerischer Bewertungsverfahren aufgezeigt.
Anhand einfacher Modellanordnungen wird beispielhaft der Einfluss der räumlichen Struktur des Erdungssystems auf die frequenzabhängige Fehlerstromverteilung, die wirksamen Erdungsimpedanzen und die resultierenden Erdungsspannungen analysiert. Dabei werden explizit Erdfehler an zusammengeschlossenen Hoch- und Niederspannungs-Erdungsanlagen untersucht. Die Ergebnisse zeigen, dass rein zweidimensionale Berechnungsverfahren den theoretischen Worst-Case hinsichtlich der Erdungsspannung nicht abdecken. Für die praktische Anwendung des Modells werden sowohl Vereinfachungen als auch zusätzliche Sicherheitsaufschläge abgeleitet.
Weiterhin erfolgt die modellbasierte Untersuchung einpoliger Fehler in voll- und teilverkabelten Netzen. Im Fokus steht dabei die potentialanhebende Wirkung der Frequenzanteile des einpoligen Fehlerstroms. Es wird aufgezeigt, dass infolge der induktiven Kopplungen ein hoher Anteil des Rückstroms in den beidseitig geerdeten Schirmen der fehlerstromführenden Kabel fließt. Bedingt durch die Frequenzcharakteristik des Reduktionsfaktors wirken die höherfrequenten Anteile des Erdfehlerstroms in vollverkabelten Netzgebieten in deutlich geringerem Maße potentialanhebend als der Grundschwingungsanteil. Daher lassen sich insbesondere für die Erdungssysteme von Kabelnetzen mit Resonanz-Sternpunkterdung vereinfachte Bewertungsmethoden ableiten.
In Summe liefert diese Arbeit einen Beitrag dazu, wie der rechnerische Nachweis zulässiger Berührungsspannungen geführt und das Prozedere zur Auslegung von Erdungsanlagen vereinfacht werden kann. / The design of earthing installations in European high voltage grids has to comply with the standard EN 50522. The determining quantities for the risk assessment are the touch and step voltages occurring during an earth fault. Since the direct estimation of these voltages is complicated, earthing installations are usually assessed by means of the earth potential rise. For the calculation of the earth potential rise the knowledge of the fault current distribution (or the effective reduction factors) is required, since only the proportional current to earth raises the potential of the earthing installations. The inductive coupling between the conductor carrying the fault current and the current paths leading back to the neutral point is decisive for the distribution of the currents in the earthing system. This indicates that both the spatial arrangement of the conductors and the frequency of the fault current components have a determining influence on the prevalent conditions. To date, both influences have only been considered to a minor extent in the standards and technical literature.
This thesis relates to the calculation and evaluation of the earth potential rises in differently structured earthing systems. Thereby, the varying potential raising effect of the harmonics in the earth fault current is examined. For this purpose, a model for the calculation of the frequency-dependent current distribution in interconnected earthing installations is developed. In extension to existing approaches, this model particularly represents the influence of the three-dimensional arrangement of the conductors on their magnetic coupling. Through theoretical considerations and accompanying measurements, the limits of such calculational evaluation methods are demonstrated.
Based on simple model arrangements, the influence of the spatial structure of the earthing system on the frequency-dependent fault current distribution (reduction factors), the effective impedances to earth and the resulting earth potential rise is analysed exemplarily. Thereby, earth faults at interconnected high-voltage and low-voltage earthing installations are investigated explicitly. The results show that two-dimensional calculation methods do not cover the theoretical worst case regarding the earth potential rise. For the practical application of the model, simplifications as well as additional safety surcharges are derived.
Furthermore, model-based investigations of single-pole faults in fully and partially cabled grids are carried out. The focus is on the potential-raising effect of the harmonic components of the single-pole fault current. It is shown that, due to inductive coupling, a high percentage of the return current flows via the shields of the cables carrying the fault current. Due to the frequency characteristic of the reduction factor, in fully cabled grid areas higher-frequency components of the earth fault current have a significantly lower potential-raising effect than the fundamental component. Particularly for the earthing systems of cable grids with resonant earthing, simplified assessment methods can thus be derived.
In summary, this thesis provides a contribution on how to proof permissible touch voltages by calculation and how to simplify the procedure for the assessment of earthing installations in perspective.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90176
Date14 March 2024
CreatorsKüchler, Benjamin
ContributorsSchegner, Peter, Schmidt, Uwe, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds