Return to search

Real-time mathematical description of a fuel cell system with a passive hydrogen recirculation

A passive recirculation of hydrogen using ejectors is effective and efficient only in a limited operating window, which kept ejectors until recently from being integrated into automotive fuel cell systems, where a more dynamic operation is expected. Strategies like parallel setup or a PWM-drive employed to expand the operating window demand reliable control algorithms. Such algorithms can greatly benefit from the predictive power a mathematical model. In a fuel cell system, the anode and cathode side cannot be separated, and a mathematical description should encompass all components to a reasonable degree, to allow the model to run on a low power automotive-grade platform in real time. This contribution demonstrates an approach to reduce the computation expense of the mathematical model.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36244
Date25 November 2019
CreatorsKozeny, Pavel, Hrdlicka, Jiri, von Unwerth, Thomas
ContributorsTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:ch1-qucosa2-357204, qucosa:35720

Page generated in 0.0021 seconds