Return to search

Hochaufgelöste Erfassung zukünftiger Klimarisiken für Land- und Forstwirtschaft in Unterfranken / High resolution assessment of future climate risks for agriculture and forestry in Lower Franconia

Das Klima und seine Veränderungen wirken sich direkt auf die Land- und Forstwirtschaft aus. Daher ist die Untersuchung der zukünftigen Klimarisiken für diese Sektoren von hoher Relevanz. Dies ist auch und vor allem für den schon heute weiträumig trockheitsgeprägten und vom Klimawandel besonders betroffenen nordwestbayerischen Regierungsbezirk Unterfranken der Fall, dessen Gebiet zu über 80 % land- oder forstwirtschaftlich genutzt wird. Zur Untersuchung der Zukunft in hoher räumlicher Auflösung werden Projektionen von regionalen Klimamodellen genutzt. Da diese jedoch Defizite in der Repräsentation des beobachteten Klimas der Vergangenheit aufweisen, sollte vor der weiteren Verwendung eine Anpassung der Daten erfolgen. Dies geschieht in der vorliegenden Arbeit am Beispiel des regionalen Klimamodells REMO im Bezug auf klimatische Kennwerte für Trockenheit, Starkniederschlag, Hitze sowie (Spät-)Frost, die alle eine hohe land- und forstwirtschaftliche Bedeutung besitzen. Die Datenanpassung erfolgt durch zwei verschiedene Ansätze. Zum Einen wird eine Biaskorrektur der aus Globalmodell-angetriebenen REMO-Daten berechneten Indizes durch additive und multiplikative Linearskalierung sowie empirische und parametrische Verteilungsanpassung durchgeführt. Zum Anderen wird ein exploratives Verfahren auf Basis von Model Output Statistics angewandt: Lokale und großräumige atmosphärische Variablen von REMO mit Reanalyseantrieb, die eine zeitliche Korrespondenz zu den Beobachtungen aufweisen, dienen als Prädiktoren für die Aufstellung von Transferfunktionen zur Simulation der Indizes. Diese Transferfunktionen werden sowohl mithilfe Multipler Linearer Regression als auch mit verschiedenen Generalisierten Linearen Modellen konstruiert. Sie werden anschließend genutzt, um Analysen auf Basis von biaskorrigierten Globalmodell-angetriebenen REMO-Prädiktoren durchzuführen. Sowohl für die Biaskorrektur als auch die Model Output Statistics wird eine Kreuzvalidierung durchgeführt, um die Ergebnisse unabhängig vom jeweiligen Trainingszeitraum zu untersuchen und die jeweils besten Varianten zu finden. Werden beide Verfahren mit ihren Unterkategorien für den gesamten historischen Modellzeitraum verglichen, so weist für alle Monat-Kennwert-Kombinationen eine der beiden Verteilungskorrekturen die besten Ergebnisse auf. Die Zukunftsprojektionen unter Verwendung der jeweils erfolgreichsten Methode zeigen im regionalen Durchschnitt für das 21. Jahrhundert negative Trends der (Spät-)Frost- und Eis- sowie positive Trends der Hitzetagehäufigkeit. Winterliche Starkregenereignisse nehmen hinsichtlich ihrer Anzahl zu, im Sommer verstärkt sich die Trockenheit. Die Hinzunahme zwei weiterer regionaler Klimamodelle bestätigt die allgemeinen Zukunftstrends, jedoch ergeben sich beim Spätfrost Widersprüche, wenn dieser hinsichtlich der thermisch abgegrenzten Vegetationsperiode definiert wird.

Zusätzlich werden die Model Output Statistics auf gleiche Weise mit bodennahen Prädiktoren zur Simulation von Erträgen aus Acker- und Weinbau wiederholt. Die Güte kann aufgrund mangelnder Beobachtungsdatenlänge nur anhand der Reanalyse-angetriebenen REMO-Daten abgeschätzt werden, ist hierbei jedoch deutlich besser als im Bezug auf die Kennwertsimulation. Die Zukunftsprojektionen von REMO sowie drei weiterer Regionalmodelle zeigen im Mittel über alle Landkreise Unterfrankens steigende Winter- sowie sinkende Sommerfeldfruchterträge. Hinsichtlich der Frankenweinerträge widersprechen sich die Ergebnisse der drei Klassen Weiß-, Rot- und Gesamtwein insofern, als dass REMO und ein weiteres Modell negative Weiß- und Rotweinertragstrends, jedoch positive Gesamtweinertragstrends simulieren. Die zwei anderen verwendeten Modelle führen durch positive Trendvorzeichen für den Weißwein zu insgesamt kohärenten Ergebnissen.

Die Resultate im Bezug auf die land- und forstwirtschaftlich relevanten klimatischen Kennwerte bedeuten, dass Anpassungsmaßnahmen gegenüber Hitze sowie im Speziellen gegenüber Trockenheit in Zukunft im ohnehin trockenheitsgeprägten Unterfranken an Bedeutung gewinnen werden. Auch die unsicheren Projektionen im Bezug auf die Spätfrostgefahr müssen im Blick behalten werden. Die Trends der Feldfruchterträge deuten in die gleiche Richtung, da Sommergetreide eine höhere Trockenheitsanfälligkeit besitzen. Die unklaren Ergebnisse der Weinerträge hingegen lassen keine eindeutigen Schlüsse zu. Der starke anthropogene Einfluss auf die Erntemengen sowie die großen Unterschiede der Rebsorten hinsichtlich der klimatischen Eignung könnten ein Grund hierfür sein. / There is a direct impact of climate and its modifications on agriculture and forestry. For this reason, analyzing future climate risks concerning these sectors is highly important. This is also and particularly the case for the northwestern Bavarian administrative district of Lower Franconia, which is characterized by dry conditions even today and which is especially affected by climate change. Additionally, more than 80 % of its area is used for agriculture or forestry. To study future conditions in high spatial resolutions, projections of regional climate models are used. As these show deficits in the representation of the observed climate of the past, an adaption of the data should happen before application. In the study at hand, this is done using the example of the regional climate model REMO regarding climatic indices for dryness, heavy precipitation, and heat as well as (late) frost, all of which are of high agricultural and silvicultural relevance. Adaption of the data is handled via two different approaches. On the one hand, a bias correction of the indices calculated from REMO data based on global climate model output is done using additive and multiplicative linear scaling as well as empirical and parametric distribution adaption. On the other hand, an explorative technique based on model output statistics is applied: Local and large-scale atmospheric variables of REMO run with reanalysis data, possessing a temporal correspondence with observations, are used as predictors for the derivation of transfer functions for simulating the indices. The transfer functions are constructed by means of Multiple Linear Regression as well as different Generalized Linear Models. Subsequently, they are used for analyses based on bias corrected REMO predictors run with global climate model data. Both bias correction and model output statstics are performed in a cross-validated manner for examining the results independently from the training period and finding the best alternative for each situation. When comparing both methods with their subcategories for the entire historical model period, for all month-index-combinations one of the distribution correction techniques exhibits the best results. Future projections using the most successful method for each situation show negative trends of (late) frost and ice as well as positive trends of heat day occurence for the 21st century. The number of heavy precipitation days increases in winter, dryness amplifies in summer. When taking into consideration two additional regional climate models, the general future trends are confirmed. Nevertheless, discrepancies result regarding late frost when the respective vegetation period is demarcated based on temperature in contrast to monthly delineation.

Additionally, model output statistics are repeated in the same manner using near-surface predictors for simulating yield of agriculture and viticulture. Estimation of quality can only be performed on the basis of reanalysis-run REMO data as the duration of the observational data is too short. However, the respective results show a much better performance than for the index simulations. Averaging all rural districs of Lower Franconia, future projections of REMO as well as three additional regional models show rising yields for winter as well as falling yields for summer crops. With respect to the yield of Franconian wine, the results of the three analyzed classes of white, red and total wine disagree as REMO and one additional model simulate negative white and red wine, but positive total wine yields. More consistent results are achieved using the other models, which project positive trend signs for white wine.

The outcomes concerning climatic indices of agricultural and silvicultural relevance imply a future gain of importance of adaption measures towards heat and particularly dryness in Lower Franconia which is already drought-affected today. Furthermore, uncertainty in the projections of late frost has to be kept in mind. The resulting trends of agricultural yield point along the same lines as summer crops are more drought-sensitive. However, the ambiguity of the wine yield results impede precise conclusions. A reason for this could be the strong anthropogenic influence on yields as well as the great differences between grape varieties regarding their climatic suitability.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:34735
Date January 2024
CreatorsKeupp, Luzia Esther
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds