Selecionar atributos é, por vezes, uma atividade necessária para o correto desenvolvimento de tarefas de aprendizado de máquina. Em Mineração de Textos, reduzir o número de atributos em uma base de textos é essencial para a eficácia do processo e a compreensibilidade do conhecimento extraído, uma vez que se lida com espaços de alta dimensionalidade e esparsos. Quando se lida com contextos nos quais a coleção de textos é não-rotulada, métodos não-supervisionados de redução de atributos são utilizados. No entanto, não existe forma geral predefinida para a obtenção de medidas de utilidade de atributos em métodos não-supervisionados, demandando um esforço maior em sua realização. Assim, este trabalho aborda a seleção não-supervisionada de atributos por meio de um estudo exploratório de métodos dessa natureza, comparando a eficácia de cada um deles na redução do número de atributos em aplicações de Mineração de Textos. Dez métodos são comparados - Ranking porTerm Frequency, Ranking por Document Frequency, Term Frequency-Inverse Document Frequency, Term Contribution, Term Variance, Term Variance Quality, Método de Luhn, Método LuhnDF, Método de Salton e Zone-Scored Term Frequency - sendo dois deles aqui propostos - Método LuhnDF e Zone-Scored Term Frequency. A avaliação se dá em dois focos, supervisionado, pelo medida de acurácia de quatro classificadores (C4.5, SVM, KNN e Naïve Bayes), e não-supervisionado, por meio da medida estatística de Expected Mutual Information Measure. Aos resultados de avaliação, aplica-se o teste estatístico de Kruskal-Wallis para determinação de significância estatística na diferença de desempenho dos diferentes métodos de seleção de atributos comparados. Seis bases de textos são utilizadas nas avaliações experimentais, cada uma relativa a um grande domínio e contendo subdomínios, os quais correspondiam às classes usadas para avaliação supervisionada. Com esse estudo, este trabalho visa contribuir com uma aplicação de Mineração de Textos que visa extrair taxonomias de tópicos a partir de bases textuais não-rotuladas, selecionando os atributos mais representativos em uma coleção de textos. Os resultados das avaliações mostram que não há diferença estatística significativa entre os métodos não-supervisionados de seleção de atributos comparados. Além disso, comparações desses métodos não-supervisionados com outros supervisionados (Razão de Ganho e Ganho de Informação) apontam que é possível utilizar os métodos não-supervisionados em atividades supervisionadas de Mineração de Textos, obtendo eficiência compatível com os métodos supervisionados, dado que não detectou-se diferença estatística nessas comparações, e com um custo computacional menor / Feature selection is an activity sometimes necessary to obtain good results in machine learning tasks. In Text Mining, reducing the number of features in a text base is essential for the effectiveness of the process and the comprehensibility of the extracted knowledge, since it deals with high dimensionalities and sparse contexts. When dealing with contexts in which the text collection is not labeled, unsupervised methods for feature reduction have to be used. However, there aren\'t any general predefined feature quality measures for unsupervised methods, therefore demanding a higher effort for its execution. So, this work broaches the unsupervised feature selection through an exploratory study of methods of this kind, comparing their efficacies in the reduction of the number of features in the Text Mining process. Ten methods are compared - Ranking by Term Frequency, Ranking by Document Frequency, Term Frequency-Inverse Document Frequency, Term Contribution, Term Variance, Term Variance Quality, Luhn\'s Method, LuhnDF Method, Salton\'s Method and Zone-Scored Term Frequency - and two of them are proposed in this work - LuhnDF Method and Zone-Scored Term Frequency. The evaluation process is done in two ways, supervised, through the accuracy measure of four classifiers (C4.5, SVM, KNN and Naïve Bayes), and unsupervised, using the Expected Mutual Information Measure. The evaluation results are submitted to the statistical test of Kruskal-Wallis in order to determine the statistical significance of the performance difference of the different feature selection methods. Six text bases are used in the experimental evaluation, each one related to one domain and containing sub domains, which correspond to the classes used for supervised evaluation. Through this study, this work aims to contribute with a Text Mining application that extracts topic taxonomies from unlabeled text collections, through the selection of the most representative features in a text collection. The evaluation results show that there is no statistical difference between the unsupervised feature selection methods compared. Moreover, comparisons of these unsupervised methods with other supervised ones (Gain Ratio and Information Gain) show that it is possible to use unsupervised methods in supervised Text Mining activities, obtaining an efficiency compatible with supervised methods, since there isn\'t any statistical difference the statistical test detected in these comparisons, and with a lower computational effort
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06052009-154832 |
Date | 27 March 2009 |
Creators | Bruno Magalhães Nogueira |
Contributors | Solange Oliveira Rezende, Eduardo Raul Hruschka, Ana Carolina Lorena |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0013 seconds