Determinar o melhor conjunto de otimizações para serem aplicadas a um programa tem sido o foco de pesquisas em otimização de compilação por décadas. Em geral, o conjunto de otimizações é definido manualmente pelos desenvolvedores do compilador e aplicado a todos os programas. Técnicas de aprendizado de máquina supervisionado têm sido usadas para o desenvolvimento de heurísticas de otimização de código. Elas pretendem determinar o melhor conjunto de otimizações com o mínimo de interferência humana. Este trabalho apresenta o ML4JIT, um arcabouço para pesquisa com aprendizado de máquina em compiladores JIT para a linguagem Java. O arcabouço permite que sejam realizadas pesquisas para encontrar uma melhor sintonia das otimizações específica para cada método de um programa. Experimentos foram realizados para a validação do arcabouço com o objetivo de verificar se com seu uso houve uma redução no tempo de compilação dos métodos e também no tempo de execução do programa. / Determining the best set of optimizations to be applied in a program has been the focus of research on compile optimization for decades. In general, the set of optimization is manually defined by compiler developers and apply to all programs. Supervised machine learning techniques have been used for the development of code optimization heuristics. They intend to determine the best set of optimization with minimal human intervention. This work presents the ML4JIT, a framework for research with machine learning in JIT compilers for Java language. The framework allows research to be performed to better tune the optimizations specific to each method of a program. Experiments were performed for the validation of the framework with the objective of verifying if its use had a reduction in the compilation time of the methods and also in the execution time of the program.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05092017-101617 |
Date | 27 June 2017 |
Creators | Mignon, Alexandre dos Santos |
Contributors | Rocha, Ricardo Luis de Azevedo da |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds