Começamos definindo a cohomologia clássica de De Rham e provamos alguns resultados que nos permitem calcular tal cohomologia de algumas variedades diferenciáveis. Com o intuito de provar o Teorema de De Rham, escolhemos fazer a demonstração utilizando a noção de feixes, que se mostra como uma generalização da ideia de cohomologia. Como a cohomologia de De Rham não é a única que se pode definir numa variedade, a questão da unicidade dá origem a teoria axiomática de feixes, que nos dará uma cohomologia para cada feixe dado. Mostraremos que a partir da teoria axiomática de feixes obtemos cohomologias, além das cohomologias clássicas de De Rham, a cohomologia clássica singular e a cohomologia clássica de Cech e mostraremos que essas cohomologias obtidas a partir da noção axiomática são isomorfas as definições clássicas. Concluiremos que se nos restringirmos a apenas variedades diferenciáveis, essas cohomologias são unicamente isomorfas e este será o teorema de De Rham. / We begin by defining De Rhams classical cohomology and we prove some results that allow us a calculation of the cohomology of some differentiable manifolds. In order to prove De Rhams Theorem, we chose to make a demonstration using a notion of sheaves, which is a generalization of the idea of cohomology. Since De Rhams cohomology is not a only one that can be made into a variety, the question of unicity gives rise to axiomatic theory of sheaves, which give us a cohomology for each sheaf given. We will show that from the axiomatic theory of sheaves we obtain cohomologies, besides the classical cohomologies of De Rham, a singular classical cohomology and a classical cohomology of Cech and we will show that cohomologies are obtained from the axiomatic notion are classic definitions. We will conclude that if we restrict ourselves to only differentiable manifolds, these cohomologies are uniquely isomorphic and this will be De Rhams theorem.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-16112017-101825 |
Date | 27 July 2017 |
Creators | Junior Soares da Silva |
Contributors | Igor Mencattini, Oziride Manzoli Neto, Edivaldo Lopes dos Santos, Daniel Vendruscolo |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds