In this thesis the telecommunication problem known as inter-cell interference is examined. Inter-cell interference originates from users in neighboring cells and affects the users in the own cell. The reason that inter-cell interference is interesting to study is that it affects the maximum data-rates achievable in the 3G network. By knowing the inter-cell interference, higher data-rates can be scheduled without risking cell-instability. An expression for the coupling between cells is derived using basic physical principles. Using the expression for the coupling factors a nonlinear model describing the inter-cell interference is developed from the model of the power control loop commonly used in the base stations. The expression describing the coupling factors depends on the positions of users which are unknown. A quasi decentralized method for estimating the coupling factors using measurements of the total interference power is presented. The estimation results presented in this thesis could probably be improved by using a more advanced nonlinear filter, such as a particle filter or an Extended Kalman filter, for the estimation. Different expressions describing the coupling factors could also be considered to improve the result.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-71156 |
Date | January 2011 |
Creators | Gunning, Dan, Jernberg, Pontus |
Publisher | Linköpings universitet, Reglerteknik, Linköpings universitet, Reglerteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds