Return to search

Detecting short adjacent repeats in multiple sequences: a Bayesian approach.

Li, Qiwei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (p. 75-85). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Repetitive DNA Sequence --- p.3 / Chapter 1.1.1 --- Definition and Categorization of Repeti- tive DNA Sequence --- p.3 / Chapter 1.1.2 --- Definition and Categorization of Tandem Repeats --- p.4 / Chapter 1.1.3 --- Definition and Categorization of Interspersed Repeats --- p.6 / Chapter 1.2 --- Research Significance --- p.7 / Chapter 1.3 --- Contributions --- p.9 / Chapter 1.4 --- Thesis Organization --- p.11 / Chapter 2 --- Literature Review and Overview of Our Method --- p.13 / Chapter 2.1 --- Existing Methods --- p.14 / Chapter 2.2 --- Overview of Our Method --- p.17 / Chapter 3 --- Theoretical Background --- p.22 / Chapter 3.1 --- Multinomial Distributions --- p.23 / Chapter 3.2 --- Dirichlet Distribution --- p.23 / Chapter 3.3 --- Metropolis-Hastings Sampling --- p.25 / Chapter 3.4 --- Gibbs Sampling --- p.26 / Chapter 4 --- Problem Description --- p.28 / Chapter 4.1 --- Generative Model --- p.29 / Chapter 4.1.1 --- Input Data R --- p.31 / Chapter 4.1.2 --- Parameters A (Repeat Segment Starting Positions) --- p.32 / Chapter 4.1.3 --- Parameters S (Repeat Segment Structures) --- p.33 / Chapter 4.1.4 --- Parameters θ(Motif Matrix) --- p.35 / Chapter 4.1.5 --- Parameters Φ (Background Distribution) . --- p.36 / Chapter 4.1.6 --- An Example of the Model Schematic Di- agram --- p.37 / Chapter 4.2 --- Parameter Structure --- p.38 / Chapter 4.3 --- Posterior Distribution --- p.40 / Chapter 4.3.1 --- The Full Posterior Distribution --- p.41 / Chapter 4.3.2 --- The Collapsed Posterior Distribution --- p.42 / Chapter 4.4 --- Conclusion --- p.43 / Chapter 5 --- Methodology --- p.45 / Chapter 5.1 --- Schematic Procedure --- p.46 / Chapter 5.1.1 --- The Basic Schematic Procedure --- p.46 / Chapter 5.1.2 --- The Improved Schematic Procedure --- p.47 / Chapter 5.2 --- Initialization --- p.49 / Chapter 5.3 --- Predictive Update Step for θn and Φn --- p.50 / Chapter 5.4 --- Gibbs Sampling Step for an --- p.50 / Chapter 5.5 --- Metropolis-Hastings Sampling Step for sn --- p.51 / Chapter 5.5.1 --- Rear Indel Move --- p.53 / Chapter 5.5.2 --- Partial Shift Move --- p.56 / Chapter 5.5.3 --- Front Indel Move --- p.56 / Chapter 5.6 --- Phase Shifts --- p.57 / Chapter 5.7 --- Conclusion --- p.58 / Chapter 6 --- Results and Discussion --- p.60 / Chapter 6.1 --- Settings --- p.61 / Chapter 6.2 --- Experiment on Synthetic Data --- p.63 / Chapter 6.3 --- Experiment on Real Data --- p.69 / Chapter 7 --- Conclusion and Future Work --- p.72 / Chapter 7.1 --- Conclusion --- p.72 / Chapter 7.2 --- Future Work --- p.74 / Bibliography --- p.75

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327234
Date January 2010
ContributorsLi, Qiwei., Chinese University of Hong Kong Graduate School. Division of Information Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiv, 85 p. : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds