Return to search

Enhancing Accuracy Of Hybrid Recommender Systems Through Adapting The Domain Trends

Traditional hybrid recommender systems typically follow a manually created fixed prediction strategy in their decision making process. Experts usually design these static strategies as fixed combinations of different techniques. However, people&#039 / s tastes and desires are temporary and they gradually evolve. Moreover, each domain has unique characteristics, trends and unique user interests. Recent research has mostly focused on static hybridization schemes which do not change at runtime. In this thesis work, we describe an adaptive hybrid recommender system, called AdaRec that modifies its attached prediction strategy at runtime according to the performance of prediction techniques (user feedbacks). Our approach to this problem is to use adaptive prediction strategies. Experiment results with datasets show that our system outperforms naive hybrid recommender.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612330/index.pdf
Date01 September 2010
CreatorsAksel, Fatih
ContributorsBirturk, Aysenur
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0016 seconds