Este trabalho apresenta uma metodologia de detecção e classificação de distúrbios relacionados à qualidade da energia elétrica. A detecção é feita utilizando-se somente uma regra para inferir na presença ou não do distúrbio em uma janela analisada. Para a classificação é proposto um método baseado em árvore de decisão. A árvore recebe como entrada as características do sinal extraídas tanto no domínio do tempo como no domínio da frequência, sendo a última obtida pela Transformada de Fourier. Destaca-se que toda a metodologia de extração de características foi idealizada como tentativa de se reduzir ao máximo o esforço computacional das tarefas de detecção e classificação de distúrbios. Em suma, verifica-se que os resultados obtidos são satisfatórios para a proposta desta pesquisa. / This work presents a methodology for detection and classification of disturbance related to the electric power quality. The detection is performed using only one rule to infer in the presence or not of the disturbance in a window analyzed. For the classification is proposed a method based on decision tree. The tree receives as input features of the extracted signal both in time domain and in the frequency domain, being the last obtained by Fourier transform. It is emphasized that all the features extraction methodology was idealized as an attempt to reduce to the maximum the computational effort for the tasks of detection and classification of disturbances. In short, it is possible to verify that the results obtained are satisfactory for the purpose of this research.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01102013-104201 |
Date | 11 July 2013 |
Creators | Borges, Fábbio Anderson Silva |
Contributors | Silva, Ivan Nunes da |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0187 seconds