Recent progress in Bayesian methods largely focus on non-conjugate models featured with extensive use of black-box functions: continuous functions implemented with neural networks. Using deep neural networks, Bayesian models can reasonably fit big data while at the same time capturing model uncertainty. This thesis targets at a more challenging problem: how do we model general random objects, including discrete ones, using random functions? Our conclusion is: many (discrete) random objects are in nature a composition of Poisson processes and random functions}. Thus, all discreteness is handled through the Poisson process while random functions captures the rest complexities of the object. Thus the title: composing deep learning and Bayesian nonparametric methods.
This conclusion is not a conjecture. In spacial cases such as latent feature models , we can prove this claim by working on infinite dimensional spaces, and that is how Bayesian nonparametric kicks in. Moreover, we will assume some regularity assumptions on random objects such as exchangeability. Then the representations will show up magically using representation theorems. We will see this two times throughout this thesis.
One may ask: when a random object is too simple, such as a non-negative random vector in the case of latent feature models, how can we exploit exchangeability? The answer is to aggregate infinite random objects and map them altogether onto an infinite dimensional space. And then assume exchangeability on the infinite dimensional space. We demonstrate two examples of latent feature models by (1) concatenating them as an infinite sequence (Section 2,3) and (2) stacking them as a 2d array (Section 4).
Besides, we will see that Bayesian nonparametric methods are useful to model discrete patterns in time series data. We will showcase two examples: (1) using variance Gamma processes to model change points (Section 5), and (2) using Chinese restaurant processes to model speech with switching speakers (Section 6).
We also aware that the inference problem can be non-trivial in popular Bayesian nonparametric models. In Section 7, we find a novel solution of online inference for the popular HDP-HMM model.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/d8-wz1q-6892 |
Date | January 2019 |
Creators | Zhang, Aonan |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0105 seconds