<p>This dissertation refines and extends the theory of mesoprimary decomposition, as introduced by Kahle and Miller. We begin with an overview of the existing theory of mesoprimary decomposition </p><p>in both the combinatorial setting of monoid congruences and the arithmetic setting of binomial ideals. We state all definitions and results that are relevant for subsequent chapters. </p><p>We classify redundant mesoprimary components in both the combinatorial and arithmetic settings. Kahle and Miller give a class of redundant components in each setting that are redundant in every mesoprimary decomposition. After identifying a further class of redundant components at the level of congruences, we give a condition on the associated monoid primes that guarantees the existence of unique irredundant mesoprimary decompositions in both settings. </p><p>We introduce soccular congruences as combinatorial approximations of irreducible binomial quotients and use the theory of mesoprimary decomposition to give a combinatorial method of constructing irreducible decompositions of binomial ideals. We also demonstrate a binomial ideal which does not admit a binomial irreducible decomposition, answering a long-standing problem of Eisenbud and Sturmfels. </p><p>We extend mesoprimary decomposition of monoid congruences to congruences on monoid modules. Much of the theory for monoid congruences extends to this new setting, including a characterization of mesoprimary monoid module congruences in terms of associated prime monoid congruences and a method for constructing coprincipal decompositions of monoid module congruences using key witnesses. </p><p>We conclude with a collection of open problems for future study.</p> / Dissertation
Identifer | oai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/8786 |
Date | January 2014 |
Creators | ONeill, Christopher David |
Contributors | Miller, Ezra |
Source Sets | Duke University |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0017 seconds