Return to search

Sensitivity Analysis in Air Quality Models for Particulate Matter

Fine particulate matter (PM2.5) has been associated with a variety of problems that include adverse health effects, reduction in visibility, damage to buildings and crops, and possible interactions with climate. Although stringent air quality regulations are in place, policy makers need efficient tools to test a wide range of control strategies. Sensitivity analysis provides predictions on how the interdependent concentrations of various PM2.5 components and also gaseous pollutant species will respond to specific combinations of precursor emission reductions. The Community Multiscale Air Quality Model (CMAQ) was outfitted with the Decoupled Direct Method in 3D for calculating sensitivities of particulate matter (DDM-3D/PM). This method was evaluated and applied to high PM2.5 episodes in the Southeast United States. Sensitivities of directly emitted particles as well as those formed in the atmosphere through chemical and physical processing of emissions of gaseous precursors such as SO2, NOx, VOCs, and NH3 were calculated. DDM-3D/PM was further extended to calculate receptor oriented sensitivities or the Area of Influence (AOI). AOI analysis determines the geographical extent of relative air pollutant precursor contributions to pollutant levels at a specific receptor of interest. This method was applied to Atlanta and other major cities in Georgia. The tools developed here (DDM-3D/PM and AOI) provide valuable information to those charged with air quality management.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14083
Date31 October 2006
CreatorsNapelenok, Sergey L.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format24329950 bytes, application/pdf

Page generated in 0.0019 seconds