Ces travaux ont pour application la détection l'identification des signaux audio et particulièrement les signaux d'alarmes de voitures prioritaires. Dans un premier temps, nous proposons une méthode de détection des signaux d'alarme dans un environnement bruité, fondée sur des techniques d'analyse temps-fréquence des signaux. Cette méthode permet de détecter et d'identifier des signaux d'alarmes noyés dans du bruit, y compris pour des rapports signal à bruit négatifs. Puis nous proposons une quantification des signaux robuste aux bruits de transmission. Il s'agit de remplacer chaque niveau de bit d'un vecteur d'échantillons temporels ou fréquentiels par un mot binaire de même longueur fourni par un codeur correcteur d'erreur. Dans une première approche, chaque niveau de bits est quantifié indépendamment des autres selon le critère de minimisation de la distance de Hamming. Dans une seconde approche, pour réduire l'erreur de quantification à robustesse égale, les différents niveaux de bits sont quantifiés successivement selon un algorithme de type matching pursuit. Cette quantification donne aux signaux une forme spécifique permettant par la suite de les reconnaitre facilement parmi d'autres signaux. Nous proposons donc enfin deux méthodes de détection et d'identification des signaux fondées sur la quantification robuste, opérant dans le domaine temporel ou dans le domaine fréquentiel, par minimisation de la distance entre les signaux reçus restreints à leurs bits de poids fort et les signaux de référence. Ces méthodes permettent de détecter et d'identifier les signaux dans des environnements à rapport signal à bruit très faible et ceci grâce à la quantification. Par ailleurs, la première méthode, fondée sur la signature temps-fréquence, s'avère plus performante avec les signaux quantifiés. / This work targets the detection and identification of audio signals and in particular alarm signals from priority cars. First, we propose a method for detecting alarm signals in a noisy environment, based on time-frequency signal analysis. This method makes it possible to detect and identify alarm signals embedded in noise, even with negative signal-to-noise ratios. Then we propose a signal quantization robust against transmission noise. This involves replacing each bit level of a vector of time or frequency samples with a binary word of the same length provided by an error- correcting encoder. In a first approach, each bit level is quantized independently of the others according to the Hamming distance minimization criterion. In a second approach, to reduce the quantization error at equal robustness, the different bit levels are quantized successively by a matching pursuit algorithm. This quantization gives the signals a specific shape that allows them to be easily recognized among other signals. Finally, we propose two methods for detecting and identifying signals based on robust quantization, operating in the time domain or in the frequency domain, by minimizing the distance between the received signals restricted to their high-weight bits and the reference signals. These methods make it possible to detect and identify signals in environments with very low signal-to-noise ratios, thanks to quantization. In addition, the first method, based on the time-frequency signature, is more efficient with quantized signals.
Identifer | oai:union.ndltd.org:theses.fr/2018REIMS040 |
Date | 17 December 2018 |
Creators | El jili, Fatimetou |
Contributors | Reims, Mboup, Mamadou |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds