Return to search

Multi-Platform Genomic Data Fusion with Integrative Deep Learning

The abundance of next-generation sequencing (NGS) data has encouraged the adoption of machine learning methods to aid in the diagnosis and treatment of human disease. In particular, the last decade has shown the extensive use of predictive analytics in cancer research due to the prevalence of rich cellular descriptions of genetic and transcriptomic profiles of cancer cells. Despite the availability of wide-ranging forms of genomic data, few predictive models are designed to leverage multidimensional data sources. In this paper, we introduce a deep learning approach using neural network based information fusion to facilitate the integration of multi-platform genomic data, and the prediction of cancer cell sub-class. We propose the dGMU (deep gated multimodal unit), a series of multiplicative gates that can learn intermediate representations between multi-platform genomic data and improve cancer cell stratification. We also provide a framework for interpretable dimensionality reduction and assess several methods that visualize and explain the decisions of the underlying model. Experimental results on nine cancer types and four forms of NGS data (copy number variation, simple nucleotide variation, RNA expression, and miRNA expression) showed that the dGMU model improved the classification agreement of unimodal approaches and outperformed other fusion strategies in class accuracy. The results indicate that deep learning architectures based on multiplicative gates have the potential to expedite representation learning and knowledge integration in the study of cancer pathogenesis. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24601
Date January 2019
CreatorsOni, Olatunji
ContributorsQiao, Sanzheng, Computational Engineering and Science
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0132 seconds