Return to search

Explainable Deep Learning Methods for Market Surveillance / Förklarbara Djupinlärningsmetoder för Marknadsövervakning

Deep learning methods have the ability to accurately predict and interpret what data represents. However, the decision making of a deep learning model is not comprehensible for humans. This is a problem for sectors like market surveillance which needs clarity in the decision making of the used algorithms. This thesis aimed to investigate how a deep learning model can be constructed to make the decision making of the model humanly comprehensible, and to investigate the potential impact on classification performance. A literature study was performed and publicly available explanation methods were collected. The explanation methods LIME, SHAP, model distillation and SHAP TreeExplainer were implemented and evaluated on a ResNet trained on three different time-series datasets. A decision tree was used as the student model for model distillation, where it was trained with both soft and hard labels. A survey was conducted to evaluate if the explanation method could increase comprehensibility. The results were that all methods could improve comprehensibility for people with experience in machine learning. However, none of the methods could provide full comprehensibility and clarity of the decision making. The model distillation reduced the performance compared to the ResNet model and did not improve the performance of the student model. / Djupinlärningsmetoder har egenskapen att förutspå och tolka betydelsen av data. Däremot så är djupinlärningsmetoders beslut inte förståeliga för människor. Det är ett problem för sektorer som marknadsövervakning som behöver klarhet i beslutsprocessen för använda algoritmer. Målet för den här uppsatsen är att undersöka hur en djupinlärningsmodell kan bli konstruerad för att göra den begriplig för en människa, och att undersöka eventuella påverkan av klassificeringsprestandan. En litteraturstudie genomfördes och publikt tillgängliga förklaringsmetoder samlades. Förklaringsmetoderna LIME, SHAP, modelldestillering och SHAP TreeExplainer blev implementerade och utvärderade med en ResNet modell tränad med tre olika dataset. Ett beslutsträd användes som studentmodell för modelldestillering och den blev tränad på båda mjuka och hårda etiketter. En undersökning genomfördes för att utvärdera om förklaringsmodellerna kan förbättra förståelsen av modellens beslut. Resultatet var att alla metoder kan förbättra förståelsen för personer med förkunskaper inom maskininlärning. Däremot så kunde ingen av metoderna ge full förståelse och insyn på hur beslutsprocessen fungerade. Modelldestilleringen minskade prestandan jämfört med ResNet modellen och förbättrade inte prestandan för studentmodellen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-300156
Date January 2021
CreatorsJonsson Ewerbring, Marcus
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:303

Page generated in 0.1939 seconds