Return to search

Automatic Tongue Contour Segmentation using Deep Learning

Ultrasound is one of the primary technologies used for clinical purposes. Ultrasound systems have favorable real-time capabilities, are fast and relatively inexpensive, portable and non-invasive. Recent interest in using ultrasound imaging for tongue motion has various applications in linguistic study, speech therapy as well as in foreign language education, where visual-feedback of tongue motion complements conventional audio feedback.
Ultrasound images are known to be difficult to recognize. The anatomical structure in them, the rapidity of tongue movements, also missing segments in some frames and the limited frame rate of ultrasound systems have made automatic tongue contour extraction and tracking very challenging and especially hard for real-time applications. Traditional image processing-based approaches have many practical limitations in terms of automation, speed, and accuracy.
Recent progress in deep convolutional neural networks has been successfully exploited in a variety of computer vision problems such as detection, classification, and segmentation. In the past few years, deep belief networks for tongue segmentation and convolutional neural networks for the classification of tongue motion have been proposed. However, none of these claim fully-automatic or real-time performance. U-Net is one of the most popular deep learning algorithms for image segmentation, and it is composed of several convolutions and deconvolution layers.
In this thesis, we proposed a fully automatic system to extract tongue dorsum from ultrasound videos in real-time using a simplified version of U-Net, which we call sU-Net. Two databases from different machines were collected, and different training schemes were applied for testing the learning capability of the model. Our experiment on ultrasound video data demonstrates that the proposed method is very competitive compared with other methods in terms of performance and accuracy.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38343
Date30 October 2018
CreatorsWen, Shuangyue
ContributorsLee, WonSook
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0015 seconds