Robotic grasping and manipulation of three-dimensional deformable objects is a complex task that currently does not have robust and flexible solutions. Deformable objects include a wide variety of elastic and inelastic objects that change size and shape during manipulation. The development of adaptable methods for grasping and autonomously controlling the shape of three-dimensional deformable objects will benefit many commercial applications, including shaping parts for assembly in manufacturing, manipulating food for packaging and controlling tissues during robotic surgery. Controlling a deformable object to a desired shape requires first choosing contact points on the object's surface. Next, the robotic hand is positioned in the correct position and orientation to grasp and deform the object. After deformation, the object is assessed to evaluate the quality of the shape control procedure. In many cases, this process is completed without knowing the object's properties or behaviour before deformation. This work proposes and implements the framework for a robotic arm and hand system to control the shape of a previously unseen deformable object autonomously. Significant original contributions are made in developing an original algorithm to plan contact points on a three-dimensional object for grasping and shape control. This research uses a novel object representation to reduce the dimensionality of the deformable object manipulation problem. A path planning algorithm guides the robot arm to the optimal valid grasp pose to deform the object at the determined contact points. Additional contributions include developing a multi-view assessment strategy to determine the quality of the deformation towards the desired shape. The system completes the objectives using depth and colour images captured from a single point of view to locate and identify a previously unseen three-dimensional object within a robotic workspace. After estimating the unknown object's geometry, initial grasp contact points are planned to control the object to the desired shape. The grasp points are used to plan and execute a collision-free trajectory for the robot manipulator to place the robotic hand in the optimal position and orientation to grasp and deform the object. After the deformation is complete, the object is moved to a variety of assessment positions to determine the success of the shape control procedure. The system is validated experimentally on a variety of deformable three-dimensional objects.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42554 |
Date | 18 August 2021 |
Creators | Rowlands, Stephen |
Contributors | Payeur, Pierre |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0025 seconds