Return to search

Applications of Molecular Genetics to Human Identity.

The primary objectives of this project were: 1. to develop improved methods for extraction of DNA from human skeletal remains, 2. to improve STR profiling success of low-copy DNA samples by employing whole genome amplification to amplify the total pool of DNA prior to STR analysis, and 3. to improve STR profiling success of damaged DNA templates by using DNA repair enzymes to reduce the number/severity of lesions that interfere with STR profiling. The data from this study support the following conclusions. Inhibitory compounds must be removed prior to enzymatic amplification; either during bone section pretreatment or by the DNA extraction method. Overall, bleach outperformed UV as a pretreatment and DNA extraction using silica outperformed microconcentration and organic extraction. DNA repair with PreCR™ A outperformed both whole genome amplification and repair with PreCR™ T6. Superior DNA extraction results were achieved using the A6 PMB columns (20 ml capacity column with 6 layers of type A glass fiber filter), and DNA repair with PreCR™ A led to an overall improvement in profile quality in most cases, although whole genome amplification was unsuccessful. Rapid, robust DNA isolation, successful amplification of loci from the sample-derived DNA pool, and an elimination of DNA damage and inhibitors may assist in providing sufficient genetic information from cases that might otherwise lie on the fringe of what is possible to obtain today.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc9730
Date12 1900
CreatorsTurnbough, Meredith A.
ContributorsBenjamin, Robert C., Eisenberg, Arthur J., Gill-King, H., McIntire, Sarah A., Root, Douglas D.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Turnbough, Meredith A., Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0066 seconds