Two different research projects are described in this dissertation. The first one focuses on microwave-promoted iminyl radical cyclization for the formation of azaheterocycles which are embedded within numerous pharmaceuticals and biologically active natural products (such as clindamycin, eletriptan, moxiflaxin, etc.). We are quite interested in this project because of the significance of nitrogen-containing heterocycles as pharmaceuticals and organocatalysts combined with the need for safe, simple, and economical means of constructing them. We have successfully developed an efficient one-step synthesis of 2-acylpyrroles and diastereoselective dihydropyrroles from readily available oxime ether substrates. This remarkably efficient and environmentally friendly methodology should be useful for rapid and easy preparation of potent drugs containing pyrrolidine ring systems. The second project focuses on the total synthesis of yaku'amide A. The natural compound, isolated from a marine sponge in 2010, is a medium-sized peptide that contains bulky dehydroamino acids. It has an excellent IC50 value (14 ng/mL) against leukemia cells, making it a promising anticancer agent. Because of the unique anticancer profile, potent bioactivity, and limited supply, the natural product was attractive to us for an efficient synthesis and mechanistic investigation. We have devised more efficient strategies compared to Inoue's methods for the synthesis of bulky ∆AAs and their incorporation into peptides, which are innovative and will allow us to synthesize yaku'amide A rapidly and conveniently. A one-pot sequence consisting Martin sulfurane mediated anti dehydration, azide reduction, and O→N acyl transfer was developed for the construction of E- and Z-dehydroisoleucine-containing peptides. We also developed a three-step synthesis of N-terminal acyl group involving a one-pot indium-catalyzed cross-Claisen condensation/reduction from a known compound. The most hindered coupling reaction of pentapeptide acid and nanapeptide amine in the late stage is accomplished. Our total synthesis of yaku'amide A can be completed in 19 longest linear steps and 66 total steps. Further identification of yaku'amide A for elucidation of its biological target and mode of action will be explored, which will open up new avenues in the fight against cancer.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7992 |
Date | 01 August 2017 |
Creators | Cai, Yu |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds