Return to search

The Investigation of Nickel-Based Catalysts for the Oxidative Dehydrogenation of Ethane

The Investigation of Nickel-Based Catalysts for the Oxidative Dehydrogenation of Ethane Justin Lane ParkDepartment of Chemistry & Biochemistry, BYU Doctor of Philosophy Chemistry The advancement of creating ethylene from ethane via oxidative dehydrogenation (ODH) rather than the traditional direct dehydrogenation is right on the cusp of commercialization. The oxidative pathway provides a novel route that reduces the operating temperature of this reaction by 400-500°C. A variety of metals including Mo, V, and Ni that have redox properties suitable for the partial oxidation of small chain alkanes have been investigated. Currently, a MoVNbTe oxide is the most promising catalyst but it suffers from a long and difficult preparation method and the combination of four expensive metals. Nickel based catalysts have also shown great promise but are limited by the reactivity of the oxygen species on the surface of the catalyst. In this manuscript, the details for improving the activity of the nickel and altering the activation mechanism are outlined.Bulk CeNiNb oxide catalysts were shown to almost double the rate of ethylene yields at temperatures as low as 300°C. This is partially related to the improved rate of oxygen adsorption and transfer to the active oxygens on the nickel oxide via the ceria additive. However, with further characterization of these materials, it was shown that there is likely an interaction between the Ce and Nb, forming a Ce-O- Nb linkage that is also selective towards ethylene. This facilitates a higher activity of the catalyst by creating two redox active sites. The improved rates of ethylene formation observed with these catalysts led to the initial development of a commercially viable nickel based catalyst. The support interactions of NiO with a novel silica doped alumina support show higher yields than previously reported studies of NiO on alumina for ODH. These initial metal support interactions show that the addition of the niobium and ceria to this catalyst should give ethylene yields that are satisfactory for the commercialization of this catalyst.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-8393
Date01 April 2019
CreatorsPark, Justin Lane
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0029 seconds