Ad-Hoc Wireless routing has become an important area of research in the last few years due to the massive increase in wireless devices. Computational Geometry is relevant in attempts to build stable, low power routing schemes. It is only recently, however, that models have been expanded to consider devices with a non-uniform broadcast range, and few properties are known. In particular, we find, via both theoretical and experimental methods, extremal properties for the Localized Delaunay Triangulation over the Mutual Inclusion Graph. We also provide a distributed, sub-quadratic algorithm for the generation of the structure.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-01032006-123737 |
Date | 03 January 2006 |
Creators | Watson, Mark Duncan |
Contributors | Soteros, Chris, Keil, J. Mark, Horsch, Michael C., Eager, Derek L. |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-01032006-123737/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0021 seconds