Master of Science / Department of Geology / Matthew E. Brueseke / Low-[delta][superscript]1[superscript]8O silicic magmas are found in many volcanic provinces throughout the world, including the Snake River Plain-Yellowstone volcanic province (SRPY). The origin of SRPY low-[delta][superscript]1[superscript]8O silicic magmas is controversial, and centers on two disputed models: [1] a caldera collapse model that proposes reworking of the hydrothermally altered intra-caldera fill into the underlying silicic magma body, where each successive eruption lowers the [delta][superscript]1[superscript]8O of the magma eventually producing a low-[delta][superscript]1[superscript]8O magma and [2] melting previously hydrothermally altered mid-upper crust to form low-[delta][superscript]1[superscript]8O magmas. The mid-Miocene Santa Rosa-Calico volcanic field (SC) lies in northern Nevada. Brueseke and Hart (2008) described the geology and petrology of the SC, but did not deal with the [superscript]1[superscript]8O compositions of any locally sourced silicic magma. In the existing geological framework of the SC, this project aims to evaluate the two disputed models for low-[delta][superscript]1[superscript]8O silicic magma generation by analyzing the [delta][superscript]1[superscript]8O values of SC silicic eruptive products. Fifteen representative samples of locally erupted silicic units (e.g. ash-flow tuffs and lavas) were chosen for [superscript]1[superscript]8O analyses based on Sr-Nd-Pb isotope compositions, whole rock geochemistry, and field/temporal relationships. Each sample was crushed, sieved, and quartz and feldspar crystals were handpicked, described, and analyzed for their [superscript]1[superscript]8O compositions. Our results show that low-[delta][superscript]1[superscript]8O values exist in the SC and are limited to the youngest erupted silicic unit, the 15.8 to 15.4 Ma Cold Springs tuff, which was also the only unit erupted from a caldera. Cold Springs tuff [delta][superscript]1[superscript]8O feldspar values range from 2.36 to 4.05[per mil]; the unit is not quartz-bearing. Older silicic lavas that are not petrogenetically related to the Cold Springs tuff are characterized by normal [delta][superscript]1[superscript]8O feldspar values that range from 7.19 to 10.04[per mil]. Magma mixing models indicate that the source of the Cold Springs is a mixture of hydrothermally altered Granite Peak-Sawtooth granitoid and local mid-Miocene basalt, with an approximate range of [delta][superscript]1[superscript]8O values of 2-4[per mil], by fluids (with [delta][superscript]1[superscript]8O values ranging from -12[per mil] to + 7[per mil]) from the nearby hydrothermal system at Buckskin Mountain. This result follows the model by Boroughs et al. (2005) of prior alteration and melting, forming low-[delta][superscript]1[superscript]8O silicic magmas.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/16291 |
Date | January 1900 |
Creators | Amrhein, Kate E. |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.252 seconds