Neuronale Verbindungen verändern sich abhängig von unseren Wahrnehmungen (synaptische Plastizität) - womöglich die Grundlage für Lernen und Gedächtnis. Diese zellulären Prozesse werden jedoch stark reguliert, und können durch den Zustand des Organismus beeinflusst werden. Diese Doktorarbeit befasst sich mit einem Mechanismus durch den zelluläre Lernprozesse in Pyramidalzellen durch lokale hemmende Neurone moduliert werden können. Dazu werden biophysikalische Modelle einzelner Zellen in Mikroschaltkreisen zu Rate gezogen. Der erste Teil dieser Arbeit zeigt, dass hemmende Neurone die Lernsignale in den Dendriten der Pyramidalzelle nach dem Alles-oder-Nichts-Prinzip modulieren. Demnach könnten sie einen binären Schalter für das Lernen darstellen. Im Speziellen modulieren sie ein wichtiges dendritisches Lernsignal: das rückwärts-gerichtete Aktionspotenzial, das die Synapsen über neuronale Aktivität unterrichten kann. Die Hemmung muss zeitlich genau erfolgen wenn es um die Blockierung dieses rückwärts-gerichteten Signals geht; insbesondere, wenn der betrachtete Mechanismus der Lernregulierung gleichzeitig den vorwärts-gerichteten Informationsfluss erhalten soll. Wie diese Arbeit zeigt, kann die gewünschte Taktung dennoch erreicht werden, wenn die hemmenden Neurone in einem gängigen inhibitorischen Feedforward-Schaltkreis eingebettet sind. In einem solchen Schaltkreis werden die hemmenden Neurone und die Pyramidenzellen von der gleichen vorgeschalteten Zellpopulation erregt, sodass die Pyramidalzelle erst erregende und dann hemmende Reize erfährt, was die genaue Taktung zwischen Erregung und Hemmung ermöglicht. Der zweite Teil der Arbeit befasst sich mit der Frage ob und wie solche zeitlich regulierten Feedforward-Schaltkreise im Gehirn etabliert werden können. Es wird demonstriert, dass konkrete Lernregeln für hemmende Synapsen in diesen Schaltkreisen diese so formen kann, dass sie für die individuellen zeitlichen Bedingungen der modulierten Zelle angemessen sind. / The neural correlate of learning is thought to be the experience-dependent adjustment of neuronal connections – synaptic plasticity. However, cellular processes mediating these changes are highly regulated, and can be influenced by the state of the organism. Limiting learning to behaviorally relevant episodes is useful if new experiences can overwrite old memories. In this thesis, we use computational modeling to explore a mechanism by which cellular learning processes in principal neurons can be modulated by another cell type: local inhibitory neurons. Although these cells are known to play a role for learning, the cellular mechanisms by which they influence synaptic plasticity are not completely understood. The aim is hence to shed light onto the cellular mechanisms underlying the regulation of synaptic plasticity. In the first part of this thesis, it is shown that inhibitory neurons can modulate dendritic signals for plasticity in principal neurons in an all-or-none manner. Thereby, inhibition can provide a binary switch for plasticity, which, as further demonstrated, can be specific for inputs arriving via different neural pathways. An important dendritic signal for plasticity is the backpropagating action potential, which informs synapses about neuronal activity and can be modulated by inhibition. We show that the timing requirement for inhibition of theses signals is tight; especially if modulation of plasticity via this mechanism ought to preserve forward-directed stimulus processing in the same neuron. Yet, we demonstrate that the desired timing can be accomplished if inhibition is embedded in a common inhibitory feedforward circuit. The second part of this thesis addresses the question whether and how appropriately timed inhibitory feedforward circuits can be established. We demonstrate that particular plasticity rules at inhibitory synapses can shape microcircuits to become properly adjusted to the individual timing requirements of the modulated neuron.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18325 |
Date | 18 November 2016 |
Creators | Wilmes, Katharina Anna |
Contributors | Schreiber, Susanne, Vida, Imre, Memmesheimer, Raoul-Martin |
Publisher | Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0019 seconds