Return to search

Evaluation of microbial reductive dechlorination in tetrachloroethene (PCE) Dense Nonaqueous Phase Liquid (DNAPL) source zones

Tetrachloroethene (PCE) is a major groundwater contaminant that often persists as dense, nonaqueous phase liquids (DNAPLs) in subsurface environments. Dissolved-phase PCE plumes emanate from DNAPL source zones, which act as continuous sources of contamination for decades. Removal of DNAPL source zones is crucial to achieve lasting remedy of contaminated aquifers. This research explored the contributions of the microbial reductive dechlorination process (i.e., anaerobic bioremediation) to PCE-DNAPL source zone remediation, either in isolation or as a polishing step for the removal of residual DNAPL remaining after application of surfactant enhanced aquifer remediation (SEAR), an emerging physical-chemical source zone treatment. Specific objectives of this research were to: (1) evaluate the ability of microorganisms to dechlorinate in the presence of PCE-DNAPL and at high dissolved-phase PCE concentrations expected near/in DNAPL source zones, (2) assess the distribution and activity of key dechlorinating populations during bioenhanced PCE-DNAPL dissolution in continuous-flow column experiments, (3) determine the influence of Tween 80, a biodegradable surfactant commonly used in SEAR, on the microbial reductive dechlorination process, (4) design and optimize quantitative real-time PCR (qPCR) protocols to detect and enumerate key dechlorinating populations (e.g., Geobacter lovleyi, Sulfurospirillum multivorans), and (5) explore the effects of oxygen on Dehalococcoides viability and biomarker quantification. This research demonstrated that microbial dechlorinating activity within DNAPL source zones promotes bioenhanced dissolution although many dechlorinating isolates cannot tolerate saturated PCE concentrations. Application of newly designed qPCR protocols established a direct link between dissolution enhancement and the distribution of relevant dechlorinating populations in the vicinity of PCE-DNAPL. The limited and reversible impact of Tween 80 on key dechlorinators supported the feasibility of a treatment train approach of SEAR followed by microbial reductive dechlorination to remediate PCE-DNAPL source zones. Finally, experiments with oxygen-exposed, Dehalococcoides-containing cultures suggested limitations of using Dehalococcoides DNA and RNA biomarkers for monitoring bioremediation at field sites. These findings advance the scientific understanding of the microbial reductive dechlorination process and are relevant to environmental remediation practitioners. The advantages and current shortcomings of PCE-DNAPL source zone bioremediation, as well as recommendations for future research, are discussed.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/24639
Date09 July 2007
CreatorsAmos, Benjamin Keith
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0019 seconds