La modélisation du trafic routier dans un réseau dense et de grande étendue nécessite un grand nombre de données, si bien qu'une modélisation par arcs est impossible en pratique. Pour simplifier le problème, une idée est d'agréger les tronçons du réseau en un continuum sur lequel le trafic routier s'écoule comme un fluide surfacique. Cette modélisation est qualifiée de bidimensionnelle. Même si la structure géométrique détaillée du réseau est perdue, une telle modélisation évite la description très fine du trafic sur un réseau dans lequel les points de mesure ne sont pas en nombre suffisant pour permettre une évaluation exhaustive de l'état du trafic. Une série de travaux commencée dans les années 1980 a permis de dégager quelques concepts importants. Cependant, ces travaux n'ont pas résolu les problèmes de modélisation fondamentaux : comment déduire et modéliser des comportements globaux à partir de comportements locaux (flux sur un axe, interactions aux intersections) ? Deux modèles bidimensionnels de trafic sont développés. Le premier modèle est statique. Le trafic s'écoule dans des directions de propagation privilégiées (orthogonales). Le modèle prend en compte l'équilibre entre l'offre de déplacement du réseau et une demande élastique de déplacement des usagers. Les principales sorties sont constituées en chaque point et pour chaque destination par les débits directionnels et les coûts de déplacement. Le deuxième modèle est dynamique. L'écoulement du trafic est décrit au niveau de cellules élémentaires du réseau dans lesquelles on définit les notions d'offre et de demande. À partir d'une loi comportementale obtenue sur un réseau discret, on écrit l'équation dynamique de conservation du trafic routier en tout point d'un réseau anisotrope / Traffic road modelling in the dense network of a wide area needs a large amount of data. It renders a keen modelling unmanageable in practice. To simplify the problem, an idea is to aggregate the network links as continuous medium where traffic road flows as a fluid on a surface. This modelling is called two-dimensional. Even if the detailed geometric structure of the network is lost, such a modelling avoids the traffic keen description on a network where measure points are not numerous enough to allow an exhaustive evaluation of traffic state. A series of articles started in the 80's have highlighted relevant concepts. Nevertheless, these previous works have not solved fundamental modelling issues: how to deduce and model global behaviours basing on local behaviours (flow on an axe, interactions at intersections). Two models are developed. The first model is static. Traffic road flows on privileged directions (orthogonal). The model takes into account the balance between the network trip supply and the users' elastic trip demand. The principal outputs are, for each point of the network and each destination, the directional flows and the trip costs. The second model is dynamical. The description of traffic flows stands at the level of elementary traffic cells, where concepts of supply and demand are defined. With a behaviour law deduced from a discrete network, we establish the conservation dynamic equation of road traffic at each point of an anisotropic network
Identifer | oai:union.ndltd.org:theses.fr/2012PEST1185 |
Date | 04 October 2012 |
Creators | Saumtally, Tibye |
Contributors | Paris Est, Haj-Salem, Habib |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds