Return to search

Acidification assessment on blood plasma during purification of extracellular vesicles for downstream application of biomarker analysis

Extracellular vesicles (EV) originate from various cell types and reflect the contents of the originating cells. EVs are ubiquitous in nearly all body fluids, including blood plasma, and exhibit significant potential as biomarkers in disease diagnostics. However, isolating EVs from blood plasma remains challenging due to the lack of a standardised method. This study aimed to compare and optimize a density gradient ultracentrifugation workflow (DUC) against size exclusion chromatography-cation exchange chromatography (SEC-CEC) and evaluate SEC versus SEC-CEC. Common contaminants during isolation include lipoproteins (LP); previous studies have shown that lowering the pH of blood plasma can precipitate LP, enhancing isolation efficiency. Acidified blood plasma was compared with neutral plasma for EV isolation using all above mentioned methods. To assess the ability of the isolation methods to purify contaminants while retaining maximal EV yield, samples were analysed using multiple techniques, including particle quantity, free proteins, LP-associated apolipoprotein B, purity index (μg protein/particle), and EV-associated surface markers. The results indicate potential for DUC, but further optimization is necessary to improve the method and its isolation of EV. SEC-CEC emerged as an effective method, reducing contaminants by 71% (SEC) to 99% (SEC-CEC), increasing purity by 80%, and yielding positive signals from EV markers (SEC-CEC). The effect of acidification was ambiguous, it reduced apolipoprotein-B levels in plasma pre-isolation. However, post- isolation, neutral plasma exhibited significantly lower contaminations, albeit at the expense of total particle content and risking EV loss. The study underscored several advantages of SEC-CEC but indicated that acidification did not optimise isolation efficiency.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-531709
Date January 2024
CreatorsLidell, Viktoria
PublisherUppsala universitet, Institutionen för medicinsk cellbiologi
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds