The old methods used for images inpainting of the Depth Image Based Rendering (DIBR) process are inefficient in producing high-quality virtual views from captured data. From the viewpoint of the original image, the generated data’s structure seems less distorted in the virtual view obtained by translation but when then the virtual view involves rotation, gaps and missing spaces become visible in the DIBR generated data. The typical approaches for filling the disocclusion tend to be slow, inefficient, and inaccurate. In this project, a modern technique Generative Adversarial Network (GAN) is used to fill the disocclusion. GAN consists of two or more neural networks that compete against each other and get trained. This study result shows that GAN can inpaint the disocclusion with a consistency of the structure. Additionally, another method (Filling) is used to enhance the quality of GAN and DIBR images. The statistical evaluation of results shows that GAN and filling method enhance the quality of DIBR images.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-40502 |
Date | January 2020 |
Creators | Aftab, Nadeem |
Publisher | Mittuniversitetet, Institutionen för informationssystem och –teknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds