Return to search

Locational Marginal Price Forecasting with Artificial Neural Networks under Deregulation

Power systems all over the world advance towards the direction of deregulation in the past few years. Introducing competition mechanism and the principle of market rules in deregulation. Utility companies will face unprecedented changes and challenges. Taiwan power company is also working on the deregulation direction with a competitive environment opened up, it will improve the scientific and technological levels and the service quality of electricity. Load management functions as the marginal price of electricity is predicted. Consumers can get Real-Time Pricing information determine their own buying strategy.
One most representative deregulation example in U.S.A. is the PJM(Pennsylvania¡BNew Jersey¡BMaryland)system combining generating, transmitting, distribution and sales of electricity. It offers the information of real-time power supply and is one of the cases in the world. Historical data in the thesis comes from PJM. Artificial Neural Network was designed to the Locational Marginal Price(LMP), considering the factors such as temperature and other relevant data from deregulation with the introduction of various parameters in forecasting, and the use of week as a counting base. LMP will be forecasted. The forecasted results will be to check the accuracy and performance with initial data.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0815105-163917
Date15 August 2005
CreatorsLai, Yi-Jen
ContributorsHong-Chan Chin, Whei-Min Lin, Jen-Hao Teng, Ta-Peng Tsao
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0815105-163917
Rightscampus_withheld, Copyright information available at source archive

Page generated in 0.0019 seconds