Return to search

Solução da equação de transporte multidimensional em geometria cartesiana e meio infinito usando derivada fracionária

Neste trabalho, foi construída uma forma integral para a solução das equações de transporte em uma, duas e três dimensões, considerando o núcleo de espalhamento de Klein-Nishina, espalhamento isotrópico e o núcleo de espalhamento de Rutherford, respectivamente, seguindo a mesma idéia proposta em trabalhos recentes, nos quais foi construída uma solução para a equação de transporte de nêutrons em geometria cartesiana, usando derivada fracionária. A metodologia consiste em igualar a derivada fracionária do fluxo angular à equação integral, determinar a ordem da derivada fracionária comparando o núcleo da equação integral com o da definição de Riemann-Liouville. Essa formulação foi aplicada ao cálculo de dose absorvida. São apresentadas soluções geradas a partir do emprego do método da derivada fracionária e comparadas a resultados disponíveis na literatura.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/2035
Date January 2003
CreatorsAmaral, Bárbara Denicol do
ContributorsVilhena, Marco Tullio Menna Barreto de
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds