Return to search

Digital Twin Disease Diagnosis Using Machine Learning

COVID-19 has led to a surge in the adoption of digital transformation in almost every sector. Digital health and well-being are no exception. For instance, now people get checkupsvia apps or websites instead of visiting a physician. The pandemic has pushed the health-care sector worldwide to advance the adoption of artificial intelligence (AI) capabilities.Considering the demand for AI in supporting the well-being of an individual, we presentthe real-life diagnosis as a digital twin(DT) diagnosis using machine learning. The MachineLearning (ML) technology enables DT to offer a prediction. Although several attemptsexist for predicting disease using ML and a few attempts through ML of DT frameworks,those do not deal with disease risk prediction. In addition, most of them deal with singledisease prediction after the occurrence and rely only on clinical test data like- ECG report,MRI scan, etc.To predict multiple disease/disease risks, we propose a dynamic machine learning algo-rithm (MLA) selection framework and a dynamic testing method. The proposed frameworkaccepts heterogeneous electronic health records (EHRs) or digital health status as datasetsand selects suitable MLA upon the highest similarity. Then it trains specific classifiers forpredicting a specific disease/disease risk. The dynamic testing method for prediction isused for predicting several diseases.We described three use cases: non-communicable disease(NCD) risk prediction, mentalwell-being prediction, and COVID-19 prediction. We selected diabetes, risk of diabetes,liver disease, thyroid, risk of stroke as NCDs, mental stress as a mental health issue, andCOVID-19. We employed seven datasets, including public and private datasets, with adiverse range of attributes, sizes, types, and formats to evaluate whether the proposedframework is suitable to data heterogeneity. Our experiment found that the proposed methods of dynamic MLA selection could select MLA for each dataset at cosine similarityscores ranging between 0.82-0.89. In addition, we predicted target disease/disease risks atan accuracy ranging from 94.5% to 98%.To verify the performance of the framework-selected predictor, we compared the accuracy measures individually for each of the three cases. We compared them with traditionalML disease prediction work in the literature. We found that the framework-selected algorithms performed with good accuracy compared to existing literature.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42773
Date30 September 2021
CreatorsFerdousi, Rahatara
ContributorsEl Saddik, Abdulmotaleb
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds