Return to search

Modélisation spatio-temporelle à base de modèles de Markov cachés pour la prévision des changements en imagerie satellitaire : cas de la végétation et de l'urbain

Les séries temporelles d'images satellitaires sont une source d'information importante pour le suivi des changements spatio-temporels des surfaces terrestres. En outre, le nombre d'images est en augmentation constante. Pour les exploiter pleinement, des outils dédiés au traitement automatique du contenu informationnel sont développés. Néanmoins ces techniques ne satisfont pas complètement les géographes qui exploitent pourtant, de plus en plus couramment, les données extraites des images dans leurs études afin de prédire le futur. Nous proposons dans cette thèse, une méthodologie générique à base d'un modèle de Markov caché pour l'analyse et la prédiction des changements sur une séquence d'images satellitaires. Cette méthodologie présente deux modules : un module de traitement intégrant les descripteurs et les algorithmes classiquement utilisés en interprétation d'images, et un module d'apprentissage basé sur les modèles de Markov cachés. La performance de notre approche est évaluée par des essais d'interprétations des évènements spatio-temporels effectués sur plusieurs sites d'études. Les résultats obtenus permettront d'analyser et de prédire les changements issus des différentes séries temporelles d'images SPOT et LANDSAT pour l'observation des évènements spatio-temporels telle que l'expansion urbaine et la déforestation.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01037990
Date13 December 2012
CreatorsEssid, Houcine
PublisherUniversité Blaise Pascal - Clermont-Ferrand II
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds