Descritores de características locais de imagens utilizados na representação de objetos têm se tornado muito populares nos últimos anos. Tais descritores têm a capacidade de caracterizar o conteúdo da imagem em dados compactos e discriminativos. As informações extraídas dos descritores são representadas por meio de vetores de características e são utilizados em várias aplicações, tais como reconhecimento de faces, cenas complexas e texturas. Neste trabalho foi explorada a análise e modelagem de descritores locais para caracterização de imagens invariantes a escala, rotação, iluminação e mudanças de ponto de vista. Esta tese apresenta três novos descritores locais que contribuem com o avanço das pesquisas atuais na área de visão computacional, desenvolvendo novos modelos para a caracterização de imagens e reconhecimento de imagens. A primeira contribuição desta tese é referente ao desenvolvimento de um descritor de imagens baseado no mapeamento das diferenças de nível de cinza, chamado Center-Symmetric Local Mapped Pattern (CS-LMP). O descritor proposto mostrou-se robusto a mudanças de escala, rotação, iluminação e mudanças parciais de ponto de vista, e foi comparado aos descritores Center-Symmetric Local Binary Pattern (CS-LBP) e Scale-Invariant Feature Transform (SIFT). A segunda contribuição é uma modificação do descritor CS-LMP, e foi denominada Modified Center-Symmetric Local Mapped Pattern (MCS-LMP). O descritor inclui o cálculo do pixel central na modelagem matemática, caracterizando melhor o conteúdo da mesma. O descritor proposto apresentou resultados superiores aos descritores CS-LMP, SIFT e LIOP na avaliação de reconhecimento de cenas complexas. A terceira contribuição é o desenvolvimento de um descritor de imagens chamado Mean-Local Mapped Pattern (M-LMP) que captura de modo mais fiel pequenas transições dos pixels na imagem, resultando em um número maior de \"matches\" corretos do que os descritores CS-LBP e SIFT. Além disso, foram realizados experimentos para classificação de objetos usando as base de imagens Caltech e Pascal VOC2006, apresentando melhores resultados comparando aos outros descritores em questão. Tal descritor foi proposto com a observação de que o descritor LBP pode gerar ruídos utilizando apenas a comparação dos vizinhos com o pixel central. O descritor M-LMP insere em sua modelagem matemática o cálculo da média dos pixels da vizinhança, com o objetivo de evitar ruídos e deixar as características mais robustas. Os descritores foram desenvolvidos de tal forma que seja possível uma redução de dimensionalidade de maneira simples e sem a necessidade de aplicação de técnicas como o PCA. Os resultados desse trabalho mostraram que os descritores propostos foram robustos na descrição das imagens, quantificando a similaridade entre as imagens por meio da abordagem Bag-of-Features (BoF), e com isso, apresentando resultados computacionais relevantes para a área de pesquisa. / Local feature descriptors used in objects representation have become very popular in recent years. Such descriptors have the ability to characterize the image content in compact and discriminative data. The information extracted from descriptors is represented by feature vectors and is used in various applications such as face recognition, complex scenes and textures. In this work we explored the analysis and modeling of local descriptors to characterize invariant scale images, rotation, changes in illumination and viewpoint. This thesis presents three new local descriptors that contribute to the current research advancement in computer vision area, developing new models for the characterization of images and image recognition. The first contribution is the development of a descriptor based on the mapping of gray-level-differences, called Center-Symmetric Local Mapped Pattern (CS-LMP). The proposed descriptor showed to be invariant to scale change, rotation, illumination and partial changes of viewpoint and compared to the descriptors Center-Symmetric Local Binary Pattern (CS-LBP) and Scale-Invariant Feature Trans- form (SIFT). The second contribution is a modification of the CS-LMP descriptor, which we call Modified Center-Symmetric Local Mapped Pattern (MCS-LMP). The descriptor includes the central pixel in mathematical modeling to better characterize the image content. The proposed descriptor presented superior results to CS-LMP , SIFT and LIOP descriptors in evaluating recognition of complex scenes. The third proposal includes the development of an image descriptor called Mean-Local Mapped Pattern (M-LMP) capturing more accurately small transitions of pixels in the image, resulting in a greater number of \"matches\" correct than CS-LBP and SIFT descriptors. In addition, experiments for classifying objects have been achieved by using the images based Caltech and Pascal VOC2006, presenting better results compared to other descriptors in question. This descriptor was proposed with the observation that the LBP descriptor can gene- rate noise using only the comparison of the neighbors to the central pixel. The M-LMP descriptor inserts in their mathematical modeling the averaging of the pixels of the neighborhood, in order to avoid noise and leave the more robust features. The results of this thesis showed that the proposed descriptors were robust in the description of the images, quantifying the similarity between images using the Bag-of-Features approach (BoF), and thus, presenting relevant computational results for the research area.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28092016-141219 |
Date | 02 September 2016 |
Creators | Carolina Toledo Ferraz |
Contributors | Adilson Gonzaga, Inês Aparecida Gasparotto Boaventura, Rudinei Goularte, Aparecido Nilceu Marana, Marcelo Andrade da Costa Vieira |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0111 seconds