Space debris has become an increasingly hazardous obstacle to continued spaceflight operations. In an effort to mitigate this problem an investigation of the feasibility of a microsatellite active debris removal system was conducted. Through proposing a novel concept of operation, utilizing a grapple-and-tug system architecture, and by analyzing each resultant mission phase in the frame of a representative example, it was found that microsatellite scale systems are capable of fulfilling the active debris removal mission. Analysis of rendezvous, docking, control and deorbit mission requirements determined that the design of a grapple-and-tug system will be driven by sizing of the propellant required to deorbit the target vehicle. Further sensitivity analysis determined that target altitude and mass are critical factors in determining the capabilities of a microsatellite mission. Preliminary sizing demonstrated that hardware considerations for both satellite core and mission related activities do not impede microsatellite feasibility. Further investigation of microsatellite debris removal missions including detailed design analysis and engineering is suggested.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2113 |
Date | 01 June 2013 |
Creators | James, Karsten J |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0019 seconds