The growing amount and diversity of functions to be implemented by the current and future embedded applications (like, for example, in automotive electronics) have shown that, in many cases, time-triggered and event-triggered functions have to coexist on the computing nodes and to interact over the communication infrastructure. When time-triggered and event-triggered activities have to share the same processing node, a natural way for the execution support can be provided through a hierarchical scheduler. Similarly, when such heterogeneous applications are mapped over a distributed architecture, the communication infrastructure should allow for message exchange in both time-triggered and event-triggered manner in order to ensure a straightforward interconnection of heterogeneous components. This thesis studies aspects related to the analysis and design optimisation for safety-critical hard real-time applications running on hierarchically scheduled distributed embedded systems. It first provides the basis for the timing analysis of the activities in such a system, by carefully taking into consideration all the interferences that appear at run-time between the processes executed according to different scheduling policies. Moreover, due to the distributed nature of the architecture, message delays are also taken into consideration during the timing analysis. Once the schedulability analysis has been provided, the entire system can be optimised by adjusting its configuration parameters. In our work, the entire optimisation process is directed by the results from the timing analysis, with the goal that in the end the timing constraints of the application are satisfied. The analysis and design methodology proposed in the first part of the thesis is applied next on the particular category of distributed systems that use FlexRay as a communication protocol. We start by providing a schedulability analysis for messages transmitted over a FlexRay bus, and then by proposing a bus access optimisation algorithm that aims at improving the timing properties of the entire system. For all the problems that we investigated, we have carried out extensive experiments in order to measure the efficiency of the proposed solutions. The results have confirmed both the importance of the addressed aspects during system-level design, and the applicability of our techniques for analysing and optimising the studied systems.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-8934 |
Date | January 2007 |
Creators | Pop, Traian |
Publisher | Linköpings universitet, ESLAB - Laboratoriet för inbyggda system, Linköpings universitet, Tekniska högskolan, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1089 |
Page generated in 0.002 seconds