Return to search

An Integrated Design Approach for Pipelines and Appurtenances Based on Hydrodynamic Loading

Water and wastewater conveyance research is steeply based in advancements of numerical methods and models. Design engineers need more than refinements in analysis methods to evolve the standards of practice and the related design guidelines. In an effort to improve the design efficiency and operating reliability of pipeline systems, design guidelines have been developed to enfold the various technological advancements and elevate the standard of care used in the pipeline design process. In this respect, the guidelines have been successful. However, design engineers, manufacturers, and owners have developed a level of dependency on the success of the guidelines. The guidelines, which were developed as and are clearly still held to be by the various publishing associations, a minimum standard of care, have become the default standard of care. Such statements are, of course, gross generalizations, but this thesis is dedicated to move the standard of care forward through an integrated design approach that provides a roadmap to inter-relate the independent design guidelines into a composite design approach based on hydrodynamic loading. Hydrodynamic loading introduces of a temporal parameter into the design process. With the temporal parameter this work demonstrates how the consideration of both the frequency and the influence of acceleration head on the magnitude of the hydraulic loading can be used to integrate and evolve the individual component designs into a more efficient, cost effective, reliable composite design result. With a temporal parameter present in design, many opportunities present themselves to advance the current design procedures outlined in the present design guidelines. This thesis identifies some of the present shortcomings found in the modern pipeline and appurtenance design standards and introduces a recommended path forward. Specific changes to the present standards are proposed in this work and a unique analysis procedure to identify the failure potential of cement mortar lining has been developed. Introducing the integrated design approach will allow for a significant evolution to the present standard of practice in water and wastewater conveyance system designs.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/43665
Date13 January 2014
CreatorsMcPherson, David
ContributorsKarney, Bryan William
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds