The Federal Government has called for an overhaul of STEM education, saying that we as a nation must increase "opportunities for young Americans to gain strong STEM skills" (Office of Science and Technology Policy, 2013, p.1). Economically, these skills expand beyond those that make good doctors, professors, and engineers; there is a world of jobs going unfilled because our students are graduating without the skills or knowledge that such opportunities exist. To increase the future STEM workforce, we first need to increase student awareness of a variety of STEM careers early on (Tai et al., 2006). Career decisions are being made by students as early as middle school (Tai et al., 2006); and very little if any STEM career exploration is occurring before high school. This lack of early exposure to STEM career options means that students are likely making decisions about career choices without accurate information; choosing a path before knowing about all the options. This research is broken into two manuscripts; the first of which examined the impacts of design-based learning and scientific inquiry curriculum treatments with embedded career content on the career interest of fifth-grade students as compared to traditional classroom methods. It found that there is an upward trend in career interest with the use of these curriculum treatments, but it is not a significant change, likely due to the short time period of the unit and/or small n. The second manuscript examined the effect of a design-based learning curriculum treatment implementation for a single unit on Radford City Schools fifth-grade students' STEM attitudes and interest in STEM careers through a pre/post design. The study showed statistically significant growth in overall STEM attitudes and within the science subtest specifically. Career interest in the general field of science showed a significant increase, while a change of interest in specific career areas was not statistically significant. Collectively, this research serves as a foundation for the effectiveness of having career awareness and career exposure opportunities built into active learning instruction, which does not occur currently. Built on secondary principles, but at a level appropriate for elementary students, using active learning opportunities with embedded career connections has the potential to be an effective solution to students' premature exclusion of STEM-related study and work options identified in the literature. Through preliminary exposure to this unique combination at the elementary level, a stronger foundation can be built for both ability and interest in STEM. / Ph. D. / The Federal Government has called for an overhaul of STEM education, saying that we as a nation must increase “opportunities for young Americans to gain strong STEM skills” (Office of Science and Technology Policy, 2013, p.1). Economically, these skills expand beyond those that make good doctors, professors, and engineers; there is a world of jobs going unfilled because our students are graduating without the skills or knowledge that such opportunities exist. To increase the future STEM workforce, we first need to increase student awareness of a variety of STEM careers early on (Tai et al., 2006). Career decisions are being made by students as early as middle school (Tai et al., 2006); and very little if any STEM career exploration is occurring before high school. This lack of early exposure to STEM career options means that students are likely making decisions about career choices without accurate information; choosing a path before knowing about all the options. This research is broken into two manuscripts; the first of which examined the impacts of design-based learning and scientific inquiry curriculum treatments with embedded career content on the career interest of fifth-grade students as compared to traditional classroom methods. It found that there is an upward trend in career interest with the use of these curriculum treatments, but it is not a significant change, likely due to the short time period of the unit and/or small n. The second manuscript examined the effect of a design-based learning curriculum treatment implementation for a single unit on Radford City Schools fifth-grade students’ STEM attitudes and interest in STEM careers through a pre/post design. The study showed statistically significant growth in overall STEM attitudes and within the science subtest specifically. Career interest in the general field of science showed a significant increase, while a change of interest in specific career areas was not statistically significant. Collectively, this research serves as a foundation for the effectiveness of having career awareness and career exposure opportunities built into active learning instruction, which does not occur currently. Built on secondary principles, but at a level appropriate for elementary students, using active learning opportunities with embedded career connections has the potential to be an effective solution to students’ premature exclusion of STEM-related study and work options identified in the literature. Through preliminary exposure to this unique combination at the elementary level, a stronger foundation can be built for both ability and interest in STEM.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/94557 |
Date | 19 April 2018 |
Creators | Peterson, Bryanne |
Contributors | Education, Vocational-Technical, Ernst, Jeremy V., Bowen, Bradley D., Williams, Thomas O., Mukuni, Joseph Siloka |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0025 seconds