The purpose of this research was to investigate the application of design processes to the development of novel self-use molecular diagnostic devices for sexually transmitted infections. The argument proposed in this thesis is that the application of design methods at the earliest research stages into miniaturised, low cost, molecular diagnostic technologies will accelerate and improve the process of translating proof of concept diagnostic technologies into usable devices. Concept development requirements and potential issues and barriers to development were identified through interviews with expert stakeholders. These requirements were further refined through a survey of a multidisciplinary diagnostic medical device research group. An action research method was applied to develop a proof of concept prototype to the preclinical trial stage. Through these research studies, a design process model was formulated for use in a research environment. The application of design methods to the proof of concept prototype described in the thesis have resulted in a preclinical trial prototype that exhibits the necessary features for development into a self-use molecular diagnostic device. Issues and barriers were identified and discussed, design guidelines for further development beyond preclinical trial were defined and a generalised design process model for self-use molecular diagnostic devices for sexually transmitted infections was proposed. This research highlights the need for design methods to be applied at the earliest possible stages of the development of novel molecular diagnostic devices.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:764807 |
Date | January 2017 |
Creators | Stead, Thomas |
Contributors | Pei, E. ; Hone, K. S. ; Balachandran, W. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/15197 |
Page generated in 0.0018 seconds