Return to search

From Solution into Vacuum - Structural Transitions in Proteins

Information about protein structures is important in many areas of life sciences, including structure-based drug design. Gas phase methods, like electrospray ionization and mass spectrometry are powerful tools for the analysis of molecular interactions and conformational changes which complement existing solution phase methods. Novel techniques such as single particle imaging with X-ray free electron lasers are emerging as well. A requirement for using gas phase methods is that we understand what happens to proteins when injected into vacuum, and what is the relationship between the vacuum structure and the solution structure. Molecular dynamics simulations in combination with experiments show that protein structures in the gas phase can be similar to solution structures, and that hydrogen bonding networks and secondary structure elements can be retained. Structural changes near the surface of the protein happen quickly (ns-µs) during transition from solution into vacuum. The native solution structure results in a reasonably well defined gas phase structure, which has high structural similarity to the solution structure. Native charge locations are in some cases also preserved, and structural changes, due to point mutations in solution, can also be observed in vacuo. Proteins do not refold in vacuo: when a denatured protein is injected into vacuum, the resulting gas phase structure is different from the native structure. Native structures can be protected in the gas phase by adjusting electrospray conditions to avoid complete evaporation of water. A water layer with a thickness of less than two water molecules seems enough to preserve native conditions. The results presented in this thesis give confidence in the continued use of gas phase methods for analysis of charge locations, conformational changes and non-covalent interactions, and provide a means to relate gas phase structures and solution structures.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-8300
Date January 2007
CreatorsPatriksson, Alexandra
PublisherUppsala universitet, Institutionen för cell- och molekylärbiologi, Uppsala : Universitetsbiblioteket
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 360

Page generated in 0.0137 seconds