<p> </p><p>In order to optimise the ladle treatment mass transfer modelling of aluminium addition and homogenisation time was carried out. It was stressed that incorporating slag-metal reactions into the mass transfer modelling strongly would enhance the reliability and amount of information to be analyzed from the CFD calculations.</p><p> </p><p>In the present work, a thermodynamic model taking all the involved slag metal reactions into consideration was incorporated into a 2-D fluid flow model of an argon stirred ladle. Both thermodynamic constraints and mass balance were considered. The activities of the oxide components in the slag phase were described using the thermodynamic model by Björkvall and the liquid metal using the dilute solution model. Desulphurization was simulated using the sulphide capacity model developed by KTH group. A 2-D fluid flow model considering the slag, steel and argon phases was adopted.</p><p> </p><p>The model predictions were compared with industrial data and the agreement was found quite satisfactory. The promising model calculation would encourage new CFD simulation of 3-D along this direction.</p><p> </p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-11864 |
Date | January 2009 |
Creators | Ramström, Eva |
Publisher | Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, text |
Page generated in 0.0018 seconds