Esse trabalho está baseado na investigação dos detectores de falhas aplicando classificadores de classe única. As falhas a serem detectadas são relativas ao estado de funcionamento de cada componente do circuito, especificamente de suas tolerâncias (falha paramétrica). Usando a função de transferência de cada um dos circuitos são gerados e analisados os sinais de saída com os componentes dentro e fora da tolerância. Uma função degrau é aplicada à entrada do circuito, o sinal de saída desse circuito passa por uma função diferenciadora e um filtro. O sinal de saída do filtro passa por um processo de redução de atributos e finalmente, o sinal segue simultaneamente para os classificadores multiclasse e classe única. Na análise são empregados ferramentas de reconhecimento de padrões e de classificação de classe única. Os classficadores multiclasse são capazes de classificar o sinal de saída do circuito em uma das classes de falha para o qual foram treinados. Eles apresentam um bom desempenho quando as classes de falha não possuem superposição e quando eles não são apresentados a classes de falhas para os quais não foram treinados. Comitê de classificadores de classe única podem classificar o sinal de saída em uma ou mais classes de falha e também podem classificá-lo em nenhuma classe. Eles apresentam desempenho comparável ao classificador multiclasse, mas também são capazes detectar casos de sobreposição de classes de falhas e indicar situações de falhas para os quais não foram treinados (falhas desconhecidas). Os resultados obtidos nesse trabalho mostraram que os classificadores de classe única, além de ser compatível com o desempenho do classificador multiclasse quando não há sobreposição, também detectou todas as sobreposições existentes sugerindo as possíveis falhas. / This work deals with the application of one class classifiers in fault detection. The faults to be detected are related parametric faults. The transfer function of each circuit was generated and the outputs signals with the components in and out of tolerance were analyzed. Pattern recognition and one class classifications tools are employed to perform the analysis. The multiclass classifiers are able to classify the circuit output signal in one of the trained classes. They present a good performance when the fault classes do not overlap or when they are not presented to fault classes that were not presented in the training. The one class classifier committee may classify the output signal in one or more fault classes and may also classify them in none of the trained class faults. They present comparable performance to multiclass classifiers, but also are able to detect overlapping fault classes and show fault situations that were no present in the training (unknown faults).
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:UERJ:oai:www.bdtd.uerj.br:2435 |
Date | 05 August 2011 |
Creators | Alvaro Cesar Otoni Lombardi |
Contributors | Jorge Luís Machado do Amaral, José Franco Machado do Amaral, Ricardo Tanscheit |
Publisher | Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Engenharia Eletrônica, UERJ, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UERJ, instname:Universidade do Estado do Rio de Janeiro, instacron:UERJ |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds