Intrusion Detection Systems (IDS) that provide high detection rates but are black boxes leadto models that make predictions a security analyst cannot understand. Self-Organizing Maps(SOMs) have been used to predict intrusion to a network, while also explaining predictions throughvisualization and identifying significant features. However, they have not been able to compete withthe detection rates of black box models. Growing Hierarchical Self-Organizing Maps (GHSOMs)have been used to obtain high detection rates on the NSL-KDD and CIC-IDS-2017 network trafficdatasets, but they neglect creating explanations or visualizations, which results in another blackbox model.This paper offers a high accuracy, Explainable Artificial Intelligence (XAI) based on GHSOMs.One obstacle to creating a white box hierarchical model is the model growing too large and complexto understand. Another contribution this paper makes is a pruning method used to cut down onthe size of the GHSOM, which provides a model that can provide insights and explanation whilemaintaining a high detection rate.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6807 |
Date | 12 May 2023 |
Creators | Kirby, Thomas Michael |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0153 seconds